Mastery-Based Learning in Undergraduate Computer
Architecture

Ellen Spertus
Mills College
Oakland, California, USA
ellen.spertus@gmail.com

ABSTRACT

Mastery-based learning is an approach in which students are graded
based on their demonstrated mastery of explicit learning outcomes
rather than by being awarded points less directly connected to
course goals. Instead of submitting an assignment only once, stu-
dents can use feedback to improve their work to increase their learn-
ing and grades. We describe our approach to mastery-based grading
in introductory computer organization/architecture courses at two
different institutions. Specifically, we allowed students to retake
tests of basic skills as many times as needed, which was facilitated
by programmatically-generated questions. For course projects, stu-
dents were expected to refine and resubmit projects until they
demonstrated mastery by passing all of the provided automated
tests. We share our materials and experiences, including the chal-
lenge of loosening deadlines to provide students time for continued
work without enabling them to fall irretrievably behind.

CCS CONCEPTS

« Applied computing — Interactive learning environments;
Computer-assisted instruction; » Social and professional topics
— Computer science education; Student assessment; « Com-
puter systems organization — Architectures.

KEYWORDS

computer architecture education, grading, mastery-based grading,
student assessment, DLUnit, MUnit

ACM Reference Format:

Ellen Spertus and Zachary Kurmas. 2021. Mastery-Based Learning in Under-
graduate Computer Architecture. In Proceedings of Workshop on Computer
Architecture Education 2021 (WCAE 21). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

We would like for our students to approach learning with a “growth
mindset,” where assignments, tests, and feedback are viewed as
positive opportunities to increase one’s knowledge rather than as
unpleasant, arbitrary, or punitive practices. We especially want
students to view course work primarily as a learning opportunity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WCAE °21, June 17-19, 2021, Valencia, Spain

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn. nnnnnnn

Zachary Kurmas
Grand Valley State University
Allendale, Michigan, USA
kurmasz@gvsu.edu

(where mistakes lead to better understanding) rather than as an

assessment (where mistakes hurt the student’s course grade). To

this end, we have adopted mastery-based grading, which has been

described as “a complete paradigm shift for most teachers. It means

thinking about grading as a way to provide feedback, and not a

random act that we do because the quarter is ending” [3].
Principles of mastery-based learning include [2, 10]:

e Providing students with learning goals and the objective
criteria for measuring them.

o Grading students based on these objective criteria and not on
soft skills, such as attendance, effort, or class participation.

¢ Giving students multiple opportunities to demonstrate mas-
tery, rather than grading them on their initial attempt.

These practices can place a burden on teachers by requiring
them to create multiple versions of exercises and grade students’
work multiple times — as many times as it takes for a student to
achieve the learning outcomes. We present and share tools that we
built to manage this load.

We describe how we applied mastery-based learning principles
in computer organization/architecture courses at two different in-
stitutions. Ellen Spertus used automated problem generation and
grading for exercises at Mills College, enabling students to retake
quizzes until they demonstrated mastery of the material. At Grand
Valley State University, Zachary Kurmas used GitHub Classroom
and GitHub Actions to automatically verify the correctness of stu-
dent submissions. Submissions were not graded until they passed
all of the automated tests, thereby providing students an incentive
to learn the material by fixing their mistakes. Both professors share
their resources and experiences so others can adopt and adapt them.

2 MILLS COLLEGE

Mills College is a minority-serving women’s college in Oakland,
California. After teaching Computer Architecture for over 20 years
using conventional grading techniques, Spertus made a radical shift
in her Fall 2020 Computer Architecture class, as described on the
syllabus:

Grading will be solely on demonstrated mastery of
the material, based on the principles in Grading for
Equity by Joe Feldman, as I understand them:

o Students should not be graded on soft skills or sub-
jective behaviors, such as class participation, time-
liness, and attendance.

e Students should not be penalized for making mis-
takes while learning, so final grades should not
include formative assessments (homework), only
summative assessments (lab assignments and tests).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WCAE ’21, June 17-19, 2021, Valencia, Spain

e What matters is whether students learn material,
not when they learn it, so students will be able to
redo test portions.

Students will be required to complete homework as-

signments to advance to tests and later material, but

homework grades will not count directly toward the
semester grade. Of course, much of the learning will

take place when doing the homework or receiving

feedback on it, so it is the best way to prepare for

tests.

The remainder of this section will describe how these idealistic
policies worked out.

2.1 Learning Outcomes

There were 24 learning outcomes divided among 6 groups:
Digital logic (5)

Computer arithmetic (6)

Assembly language (1)

Processors (6)

Verilog (2)

Memory (4)

Learning outcomes were judged on an integer scale from 0-4, as
advocated by Joe Feldman in Grading for Equity. Feldman argues
that the traditional percentage scale is flawed because [4, 5]:

e 60% of the scale is devoted to different levels of failure.

o A single missed assignment (0%) can have a devastating effect
on the semester grade and students’ subsequent motivation.

e Research has shown that “when teachers used the 0-100
scale to score student work, there was enormously wide
variance from teacher to teacher”[4, p. 79].

In Specifications Grading, Linda B. Nilson observes [9]:

Point totals do not easily map on outcomes. If a stu-
dent earns 72 or 80 or 88 out of 100 points, that number
does not indicate what she can and cannot do at the
end of the course.

Feldman’s 0-4 scale is shown in Table 1 applied to a computer
architecture learning outcome, writing working assembly code.
While different teachers might choose different criteria, the scale
has the virtue of being objective. Clear specification of grading
criteria shuts down arguments from students that they deserve
more points.

Automated grading was used for 8 of the learning outcomes,
shown with their criteria in Table 2. The first column indicates a
learning outcome, the second column the criteria for full credit,

the third column the criteria for % credit, and the final column

Ellen Spertus and Zachary Kurmas

the maximum number of tries attempted by any student. Numbers
in parentheses indicate how many students (out of 6) eventually
earned that score. The criteria are discussed further below.

The Canvas learning management system (LMS) lets instructors
specify learning outcomes with criteria for different scores. These
can be inserted into rubrics on quizzes that draw questions at ran-
dom from a question bank. Further details, including importable
learning outcomes, question-generating scripts, and sample ques-
tions, can be found in the author’s GitHub repository [12].

2.2 Ordering Problems

While many of the Computer Arithmetic outcomes (Table 2) are
straightforward, the ordering problems are worth discussion. Here
is a sample problem:

The following numbers are in two’s complement nota-
tion. Please order them from lowest (most negative) to
highest (most positive). For example, if they were al-
ready correctly ordered, your answer would be ABCD.

A =00111101
B = 11100000
C =10110101
D =00101100

For full credit, answer the problem without converting
all of the numbers to decimal.

In addition to providing an ordering (e.g., “CBDA”) that could be
graded automatically, students were required to provide an expla-
nation, such as:

B and C must be negative because their sign bit is 1.
Because the next bit (representing +64) is 1 in B but
not C, B must have a higher value than C, therefore
C < B. A and D are both positive because their sign
bits are 0. Because the next three bits are 011 and
010 respectively, A > D. Therefore, the final order is
C<B<D<A.

While theoretically the teacher need not take the time to man-
ually grade the explanation unless the student got the ordering
correct, providing feedback on an incorrect explanation was very
helpful to students. Another benefit of requiring an explanation
was that it made it harder to cheat. While there was no way to stop
a student from checking the ordering with a calculator, generating
an explanation required understanding the material.

Table 1: Criteria for grading the ability to write assembly code

‘ Grade) Criterion

4(A) Can implement non-leaf procedures with loops or other complex control flow
3(B) Can implement non-leaf procedure without complex control flow
2(C) Can implement simple leaf procedures

1 (D) Not used
0 (F) Cannot write working code

Mastery-Based Learning in Undergraduate Computer Architecture

WCAE 21, June 17-19, 2021, Valencia, Spain

Table 2: Grading Criteria for Learning Outcomes

Group/Outcome ‘ 4 (A) 3(B) ‘ max tries
Computer Arithmetic

Converting among bases 2, 8, 10, and 16 no errors (6) minor error 1
Converting between decimal and 2C no errors (5) minor error (1) 4
Ordering 2C numbers without conversion (6) with conversion 3
Converting between decimal and FP no errors (6) minor error 4
Ordering FP numbers without conversion (6) with conversion 3
Choosing the best representation most efficient (4) acceptable (1) 3
Processors

Encoding MIPS instructions correct (5) minor error (1) 3
Memory hierarchy

Computing average memory access time correct (5) - 7

2.3 Choosing a Representation

The final computer arithmetic learning objective was for students to
be able to choose the best (most efficient and sufficiently accurate)
numeric representation for a given scenario. While the problems
could be graded automatically, they were created manually and
there were only 6 versions. Here is an example:

You are working with a team of scientists trying to
keep track of the mass, position, and velocity of every
artificial and natural satellite in earth’s orbit, includ-
ing space junk (abandoned equipment) and asteroids.
It is vital to model this information as accurately as
possible. The mass of satellites is recorded in integer
multiples of grams. The largest satellite is the moon,
with an estimated mass of about 7.342 x 10%2 kilo-
grams. You are asked to evaluate the suitability of
different representations of the mass of each satellite.

The best answer to this question is BigInteger (4 points), and
an acceptable answer is the less efficient BigDecimal (3 points).
The other variants of this question are available to instructors on
request.

The author considered this the most important of the outcomes,
and weighted it more heavily, because it was the only one that
required higher-level understanding of the material and the most
likely to be applicable in the students’ subsequent careers.

Because the set of possible answers was limited (short, int,
long, float, double, BigInteger, and BigDecimal) and students
were allowed to retake the quiz without penalty, it was important
to make sure students could not get the answer by guessing. Conse-
quently, students were required to explain their choice. It was also
hoped that requiring an explanation would make students more
likely to make the right choice, although there were not enough
students in the class to test this hypothesis.

An unexpected implementation problem occurred when, after
failing the quiz with two different questions, the next two versions
of the quiz generated at random by Canvas repeated the same
questions rather than selecting one of the other four. The instructor
needed to manually create a quiz with an unselected question for
the student. This was not a problem with any of the other learning
outcomes because there were at least 20 automatically-generated

versions of each question in the bank (although the instructor never
checked whether there were repeats for individual students). It
would be better if the LMS avoided repeating questions when letting
a student retake a quiz.

2.4 Processors: Instruction Encoding

It was harder to generate questions related to processors, so the
only learning outcome with automated questions was the ability to
encode MIPS instructions (e.g., “add $r10, $r8, $r6”)into binary.
Because the quizzes were all open-book and the instructor wanted
to be helpful to students, an encoding reference sheet was included.
All students eventually received full credit for this question, with
the exception of one who filled the shamt portion of the instruction
with 4 0s instead of 5 0s and chose not to redo the quiz to raise their
score.

2.5 Memory hierarchy: AMAT Calculation

Similarly, there was only one automated learning outcome involv-
ing the memory hierarchy: calculating the average memory access
time of a system. Here is a sample problem (with randomly set
values underlined):

A processor has 2 levels of caches. The L1 cache has

an access time of 1 cycle and a hit rate of 93%. The

L2 cache has an access time of 4 cycles and a cumu-

lative hit rate of 99%. Main memory accesses take 73

cycles. All of the access times are concurrent (done in

parallel). What is the average memory access time in

cycles?
While all of the students eventually got a version of this problem
correct, there were more retries than for any other outcome. One
student took and failed the quiz 5 times in succession one night
before meeting with the instructor to discuss what they were doing
wrong, as no feedback had been given besides whether the final
answer was correct or incorrect.

We have since realized that giving students different instantia-
tions of this same template may not let them effectively demonstrate
that they have mastered the learning outcome because once a stu-
dent is shown how to solve one instance of the problem, they could
apply the same formula to the values in the next version of the

WCAE ’21, June 17-19, 2021, Valencia, Spain

Ellen Spertus and Zachary Kurmas

Table 3: Survey respondents’ level of agreement with statements about course policies.

Strongly agree Agree Neutral Disagree Strongly disagree‘

Being able to redo quizzes...

...reduced my stress level. 5 3 1 0 0
...caused me to get a better grade. 6 4 0 0 0
...caused me to learn more. 6 3 1 0 0
...penalizes students with many demands on their time. 0 0 1 5 4
I was able to do well on retakes without understanding the material. 0 0 1 6 3
You should keep this policy. 4 6 0 0 0
The lack of due dates...
..lowered my stress level. 6 1 1 1 1
..gave me flexibility when I needed it. 5 2 1 2 0
..caused me to prioritize other classes over this one. 3 4 2 1 0
..led me to procrastinate. 2 3 2 2 1
..led me to spend more time on assignments. 4 2 3 1 0
..led to my having to withdraw from the course. 1 0 1 4 4
I liked having explicit rubrics (grading guides) for assignments. 5 2 2 0 1
I liked that the rubrics were based on achievement of learning outcomes. 4 3 1 1 1
I understood the grading system. 5 1 1 2 1
It was hard to know how I was doing in class. 1 3 0 4 2

question without necessarily understanding the underlying princi-
ples. In the future, we would like to have more templates for AMAT
calculations, varying the number of levels and whether access times
are concurrent or sequential.

2.6 Discussion

The instructor chose to give a follow-up survey to better understand
how the policies affected students, especially because the course
had high attrition. Ten of the thirteen students who attempted the
course completed a detailed survey about the course, for which
they each received a $15 gift card.

2.6.1 Redo Policy. As shown in Table 3, students indicated that
the ability to redo quizzes reduced their stress and caused them to
learn more and earn better grades. One student wrote:

[B]eing able to correct work and retake quizzes helped
me to learn the material more deeply. Rather than just
seeing I did something wrong and not being able to do
anything about it, had the opportunity to go back and
understand the material that I hadn’t fully grasped.

Students did not feel they were able to do well on retakes without
understanding the material. They thought that the same redo policy
should be used in future years.

2.6.2 Due dates. By the second week of class, the instructor was
concerned about her decision to eliminate late penalties. Most of the
students immediately fell behind, some irretrievably so, although
they continued to insist they could catch up when the instructor
raised concerns. If the withdraw deadline had not been moved to
the last day of class because of the pandemic, a record number of
students would have failed the course. Instead, there was record
attrition. Of the 13 students who began the course, 7 withdrew, 5

completed the course by the end of the semester, and 1 took an
Incomplete that was satisfied before the start of the next semester.

Students’ opinions are shown in the second part of Table 3. Most,
but not all, students said the absence of late penalties lowered
their stress, gave them needed flexibility, caused them to prioritize
other classes, and led them to procrastinate. The 6 students who
strongly agreed (4) or agreed (2) that it caused them to spend more
time on assignments were asked whether the extra time spent was
productive. Their responses were:

e Yes, I learned the material better. (3)

o Yes because I needed the additional time to work through
problems.”(1)

e Most of the time."(1)

o No, it was unproductive perfectionism. (1)

The responses followed by a caret were written in; the other re-
sponses were selected with check boxes.

While the instructor thought the policy played a major role in
students’ not completing the course, only one student (strongly)
agreed. An optional survey question revealed that many students
were struggling with stress, mental illness (including anxiety and
depression), physical illness (of themselves or a loved one), a need
to earn money, and a lack of a good place to work, Internet connec-
tivity, or a reliable computer, caused by their moving back home for
the pandemic. More information about the course and the follow-up
survey appear in a separate paper [13].

2.6.3 Learning outcomes. In hindsight, it was not necessary to
create as many different grading criteria (levels) for each learning
outcome. Because the most common scores were either full credit
or no credit, grading time and complexity could have been reduced
by taking an all-or-nothing specifications grading approach [9].

Mastery-Based Learning in Undergraduate Computer Architecture

Additionally, it is unclear whether students deserve any college-
level credit for incorrectly converting between bases, for example,
particularly when they get multiple tries.

The policy of not counting homework toward the final grade
worked surprisingly well. Students were willing to complete home-
work assignments even though there was no explicit penalty for
not doing so. The instructor did not detect any decline in home-
work completion or quality, and she was able to spend less time
grading homework, focusing on giving students feedback rather
than assigning points.

As shown in Table 3, most students liked having explicit rubrics
based on grading outcomes, but some did not understand the grad-
ing system, and most found it hard to know how they were doing
in the class. This is a clear area for improvement.

3 GRAND VALLEY STATE UNIVERSITY

Zachary Kurmas at Grand Valley State University takes a mastery-
based approach to grading projects in the undergraduate 300-level
Computer Organization course: Student projects and assembly lan-
guage programs don’t receive a grade until they pass all of the
automated tests.! With a traditional grading model, many students
simply “submit it and forget it” By the time the graded projects are
returned, these students have moved on to other topics and men-
tally “written off” the lost points. We have not conducted a formal
study, but our experience suggests that mandating that students
fix their mistakes provides the motivation needed to seek help and
address the misconceptions that led to those mistakes in the first
place [6, 7].

The course currently assigns four projects and four assembly
language assignments. The four projects are:

(1) Build a signed adder with overflow detection

(2) Build a subtractor using the adder from Project 1; and build
a circuit that compares both signed and unsigned integers

(3) Build a simple ALU containing the circuits from Projects 1
and 2, as well as other basic operations (and, or, not, etc.)

(4) Implement the single-cycle CPU presented in the Patterson
and Hennessy text

When we introduced these projects and assignments, the scores
were quite low. Over the course of several years, we attempted to ad-
dress these low scores by clarifying and expanding the instructions,
as well as by allocating additional time during lecture to discus the
requirements and possible strategies. These changes had almost
no effect on scores. Furthermore, we noticed that, overall, students
scored reasonably well on related exam questions. It turned out that
the main cause of low scores was not poor high-level understand-
ing, but poor testing: The students were not thoroughly testing
their circuits and code before submitting them and, therefore, did
not realize that they had made low-level mistakes.

3.1 Encouraging Mastery while Reinforcing
Testing

The main reason many students were failing to master the project’s
low-level details was because they weren’t made aware of their
deficiencies in a timely manner (i.e., before the course had moved

10f course, exceptions can be made when appropriate.

WCAE 21, June 17-19, 2021, Valencia, Spain

on to other topics). In order to provide sufficiently rapid feedback,
we needed to automate the testing of projects. However, rather
than simply providing the students with a complete set of tests, we
decided to also help students improve their own testing abilities.

Like programming, testing is a skill that must be developed over
time through experience. Few (if any) students become good testers
after completing one or two units in a college course. To help
students gain valuable testing experience, we decided to introduce
into this course a workflow motivated by Test Driven Development
(TDD). For these assignments, we ask students to prepare a suite of
tests before implementing any circuits or writing any code. When
the students’ code/circuit passes their tests, they submit their work
to an automated test system (currently a GitHub Action), which
returns a terse pass/fail message. If the submission fails, students
need to review their test cases, find an omission, then write their
own failing test case. We expect that this process of finding missing
test cases will help them write more complete test suites in the
future. We also expect that the process of seeing the consequences
of their missing tests will help them retain the lesson better than if
we were to simply critique their original test cases and provide a
list of missing tests.

We believe that the common approach of simply providing stu-
dents a complete set of tests (either an “open” set of tests that the
students can view, or a “blind” set of tests that returns only a pass
or fail message) encourages them to focus on getting the tests to
pass rather than on the underlying assignment objectives. We hy-
pothesize that requiring students to write their own tests and think
critically about the shortcomings of those tests will help redirect
their focus back to the project objectives. Writing thorough tests
requires a thorough understanding of the problem being addressed.
(One of the motivations for Test Driven Development is that the
process of writing tests encourages developers to slow down and
identify aspects of the problem that are either unclear or under-
specified.) We are optimistic that our TDD-motivated workflow will
have a similar effect by helping students better recognize which
aspects of the project they need to understand better before simply
“diving in” and hoping for the best.

It is not clear the extent to which our process has improved stu-
dents’ testing abilities. We have not conducted any formal studies,
but, anecdotally, students still continue to make the same number
and types of testing mistakes throughout the semester. (In other
words, they don’t seem to test Project 4 any better than Project 1.)
We suspect that, upon receiving a failing report from the automated
tester, most students immediately scan their code for bugs rather
than scan their tests for oversights. (This suspicion is raised by the
number of students who ask for help with their assembly language
code even though they have no failing tests of their own.) Because
this course is but one small step in a the long process of learning
to test well, we don’t expect to see a clear, measurable effect until
more courses in our curriculum adopt this process.

Although the testing aspect of our process is still a work in
progress, there was an immediate improvement in student mastery:
Students were forced to acknowledge when they didn’t understand
an aspect of an assignment. They could no longer simply submit

WCAE ’21, June 17-19, 2021, Valencia, Spain

import static edu.gvsu.dlunit.x*;

// Simple tests to help students get started
public class UAdderTest {

@Test

public void zero_zero_false() {
setPinUnsigned("InputA", 0);
setPinUnsigned("InputB", 0);
setPin("CarryIn", false);
run();
assertEquals("Output", @, readPinUnsigned("Output"));
assertFalse("Carry Out", readPin("CarryOut"));

3

@Test
public void zero_one_false() {
setPinUnsigned("InputA", 0);
setPinUnsigned("InputB", 1);
setPin("CarryIn", false);
run();
assertEquals("Output", 1, readPinUnsigned("Output"));
assertFalse("Carry Out", readPin("CarryOut"));

}

// Place similar tests here....

}

Figure 1: Example DLUnit test suite

an assignment without assuring that it worked.? As a result, as-
signment grades and engagement have increased significantly. For
most assignments, timeliness accounts for 20% of the overall grade.
Consequently, the only students who earn less than 80% on an
assignment are those who give up completely and never finish it.
Most assignment grades are above 90%. Similarly, we have noticed
a considerable increase in visits to office hours. Sometimes that
engagement comes later than we’d like (i.e., after the due date), but
the vast majority of students who need help eventually ask for it.

3.2 Automated Testing Infrastructure

The infrastructure for our projects and assignments requires two
key components: (1) Automated testing tools for digital logic circuits
and assembly language (where students can easily run their own
tests), and (2) a framework with which students can run our tests
without being able to see them.

3.2.1 Test Utilities. We created DLUnit to test simulated digital
logic circuits. It is a Java program that allows JUnit tests to “drive”
either the JLS or Logisim digital logic simulators [1, 11]. DLUnit is
are-write of JLSCircuitTester [6] that replaces the older tool’s
custom syntax with JUnit syntax and adds support for Logisim. It
is available from [8].

20f course, as Dijkstra observed, testing can only prove the presence of bugs, not their
absence.

3For example, this semester, only 2 of the 40 students who completed the course failed
to complete Project 1. Among the other 38 students, the lowest grade was 87%.

Ellen Spertus and Zachary Kurmas

Similarly, we created MUnit to test MIPS assembly programs [7].
MUnit is a Java program that allows JUnit tests to “drive” the MARS
MIPS simulator. It can also be downloaded from [8].

3.2.2 Test Framework. In order for our process to help students
learn to write their own tests, it is important that students be able
to run our tests without being able to see them. We do this using
GitHub Classroom and GitHub Actions. GitHub Classroom is an
instructor-facing tool that automatically creates a separate GitHub
repository for each student (or group of students) in a class. Students
work on assignments inside the repository created for them. They
submit their code by executing a git push. When their code is
pushed, GitHub automatically executes a GitHub Action that runs
the instructor-provided DLUnit or MUnit test suite. In order to hide
the tests from the students, the GitHub Action downloads the tests
from the instructor’s web site. This web site has a directory that is
configured to only accept requests from IP addresses that belong to
GitHub.

3.3 Discussion

At the time we made these changes, we had not heard of mastery-
based grading; however, our approach is congruent: Students demon-
strate mastery over project objectives by submitting code/circuits
that pass a suite of tests. Those submissions that pass the tests earn
full credit (or close to it). Although some proponents of mastery-
based grading discourage the use of factors such as timeliness, our
students lose points if their submissions don’t pass all the auto-
mated tests by a given date. We believe that some students would
fall hopelessly behind if project grades did not include a timeliness
component. We have not conducted a formal study, but we expect
that if projects weren’t due until the end of the semester, a signifi-
cant number of students would fall too far behind to be able to catch
up, as was the case at Mills College. We are also concerned that we
would receive more submissions than we could grade during the
last couple weeks of a semester.

To be clear, we use automated tests, but we do not “autograde”
assignments. Each submission is reviewed after it passes the auto-
mated tests. For the digital logic assignments, the grader might sug-
gest techniques for making a circuit more efficient and/or readable.
For the assembly language assignments, the grader might suggest
how to write code that more closely follows established conven-
tions. There is a limit to how many projects we could thoughtfully
provide feedback on during the last week or two of a semester,
which is another reason deadlines are important. In addition, our
feedback would not be useful if students didn’t receive it early
enough in the semester to apply it to subsequent assignments.

Moving to a mastery-based grading system for the entire course
(as opposed to just the aforementioned assignments) would address
one of the main shortcomings of our approach: It is difficult to
properly balance assignment grades and exam grades. Currently,
course grades are simply a weighted average of tests (50%), projects
(20%), labs (20%), and homework (10%). Project and lab grades are
almost always above 90%. As a result, weak students who work
(either formally or informally) with a strong student can earn a
final grade that does not reflect their actual level of understanding.
Every semester, there are a few students who barely pass the tests
but end up with a course average above 75% because their lab and

Mastery-Based Learning in Undergraduate Computer Architecture

project grades are well above 90%.* The conventional solution of
increasing the weight of tests and decreasing the weight of projects
is not ideal because doing so would make the projects feel “under
valued”. (The projects require too much work to be worth “only”
10% of the final grade.)

A mastery-based course grade would eliminate the need to as-
sign a specific weight to projects (or any other category of work).
Instead, projects would simply become a task students are expected
to complete in order to pass the course. In that sense, their effect
would feel proportionate to the amount of work required, but, at
the same time, high project grades could not “make up for” low test
grades — students would need to do well on both components to
earn a high grade in the course.

4 CONCLUSION

The authors applied mastery-based grading to motivate students
to create better work and earn higher grades while (we hope) de-
veloping a better understanding of both undergraduate computer
architecture and practices conducive to success, such as accepting
and applying feedback (Mills College) and practicing test-driven
development (Grand Valley State University).

Mills students were given rubrics for each learning outcome and
the option, in many cases, to retake tests as many times as they
chose, which was feasible because test questions were generated
programmatically. (This approach would be less applicable in more
advanced classes that require deeper understanding.) The ability to
retake tests without penalty avoids the frustrating situation where
students understand material only after the instructor goes over the
graded test, at which point it is too late for grades to improve. In-
stead, students can decide for themselves when their grade matches
their level of mastery and when to move on (instead of giving each
student exactly one attempt). While this aspect of mastery-based
learning worked well for students and we recommend it, eliminat-
ing late penalties proved counterproductive.

GVSU students were expected to completely debug digital logic
projects and assembly language programs before receiving a grade
for the assignment. We recommend this mastery-based approach be-
cause it encourages students to address gaps in their understanding
rather than simply “writing off” points. Anecdotally, this approach
appears to be successful because the majority of students eventually
submit correct projects and programs. In addition, GVSU students
were also asked to follow a TDD-like workflow when working on
these assignments in order to improve their testing abilities. We can
not yet determine the effects this approach has had on our students’
testing abilities. We suspect that this approach would need to be
adopted by several other courses before there is a measurable effect.

At both schools, technology was employed to reduce the human
testing and grading burden. Mills students took programmatically-
generated tests with a combination of automatic and human grad-
ing, while GVSU students needed their programs to pass automated
tests before they could be submitted and graded by a human being.
These tools are available at the authors’ websites [8, 12].

4The projects cover fewer than half of the topics in the course. These struggling
students do fine on the project-based questions but do very poorly on questions
covering topics like sequential circuits, cache memory, and pipelining.

WCAE 21, June 17-19, 2021, Valencia, Spain

REFERENCES

[1] Carl Burch. 2002. Logisim: A Graphical System for Logic Circuit Design and
Simulation. 7. Educ. Resour. Comput. 2, 1 (March 2002), 5-16. https://doi.
org/10.1145/545197.545199

[2] Robert Campbell, David Clark, and Jessica OShaughnessy. 2020. In-

troduction to the Special Issue on Implementing Mastery Grading

in the Undergraduate Mathematics Classroom. PRIMUS 30, 8-10

(2020), 837-848. https://doi.org/10.1080/10511970.2020.1778824

arXiv:https://doi.org/10.1080/10511970.2020.1778824

Amadou Diallo. 2019. How Mastery-Based Learning Can Help Students of Every

Background Succeed. National Public Radio (March 11, 2019). Retrieved March 23,

2021 from https://www.kged.org/mindshift/53241/how-mastery-based-

learning-can-help-students-of-every-background-succeed

[4] Joe Feldman. 2019. Grading for equity: what it is, why it matters, and how it

can transform schools and classrooms. Corwin, a SAGE Publishing Company,

Thousand Oaks, CA.

Lory Hough. 2019. Grade Expectations: Why we need to rethink grading in our

schools. Harvard Ed. Magazine (Summer 2019). Retrieved March 23, 2021 from

https://www.gse.harvard.edu/news/ed/19/05/grade-expectations

[6] Zachary Kurmas. 2008. Improving student performance using automated testing
of simulated digital logic circuits. In ITiCSE "08: Proceedings of the 13th annual con-
ference on Innovation and technology in computer science education (Madrid, Spain).
ACM, New York, NY, USA, 265-270. https://doi.org/10.1145/1384271.
1384342

[7] Zachary Kurmas. 2017. MIPSUnit: A Unit Testing Framework for MIPS Assembly.

In SIGCSE ’17: Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education (Kansas City, Missouri). New York, NY, USA, 351-

355. https://doi.org/10.1145/3017680.3017747

Zachary Kurmas. 2021. Automated Testing Tools (web site). https://www.cis.

gvsu.edu/~kurmasz/Software.

Linda Burzotta Nilson. 2015. Specifications grading: restoring rigor, motivating

students, and saving faculty time. Stylus Publishing, Sterling, VA.

Connecticut Department of Education. n.d.. 10 Principles of Mastery-Based Learn-

ing. Retrieved March 23, 2021 from https://portal.ct.gov/SDE/Mastery-

Based-Learning/10-Principles-of-Mastery-Based-Learning

[11] David A. Poplawski. 2007. A pedagogically targeted logic design and simulation

tool. In WCAE °07: Proceedings of the 2007 workshop on Computer architecture edu-

cation. ACM, San Diego, California, 1-7. https://doi.org/10.1145/1275633.

1275635

Ellen Spertus. 2021. Computer Architecture teaching/testing tools (GitHub

repository). https://github.com/espertus/comparch-testing.

Ellen Spertus. 2021. Interactive Asynchronous Online Computer Architecture Ed-

ucation. In WCAE °21: Proceedings of the 2021 Workshop on Computer Architecture

Education. ACM, Valencia, Spain.

—_
A

[5

—_ =
L &

[10

[12

ey
&

https://doi.org/10.1145/545197.545199
https://doi.org/10.1145/545197.545199
https://doi.org/10.1080/10511970.2020.1778824
https://arxiv.org/abs/https://doi.org/10.1080/10511970.2020.1778824
https://www.kqed.org/mindshift/53241/how-mastery-based-learning-can-help-students-of-every-background-succeed
https://www.kqed.org/mindshift/53241/how-mastery-based-learning-can-help-students-of-every-background-succeed
https://www.gse.harvard.edu/news/ed/19/05/grade-expectations
https://doi.org/10.1145/1384271.1384342
https://doi.org/10.1145/1384271.1384342
https://doi.org/10.1145/3017680.3017747
https://www.cis.gvsu.edu/~kurmasz/Software
https://www.cis.gvsu.edu/~kurmasz/Software
https://portal.ct.gov/SDE/Mastery-Based-Learning/10-Principles-of-Mastery-Based-Learning
https://portal.ct.gov/SDE/Mastery-Based-Learning/10-Principles-of-Mastery-Based-Learning
https://doi.org/10.1145/1275633.1275635
https://doi.org/10.1145/1275633.1275635
https://github.com/espertus/comparch-testing

	Abstract
	1 Introduction
	2 Mills College
	2.1 Learning Outcomes
	2.2 Ordering Problems
	2.3 Choosing a Representation
	2.4 Processors: Instruction Encoding
	2.5 Memory hierarchy: AMAT Calculation
	2.6 Discussion

	3 Grand Valley State University
	3.1 Encouraging Mastery while Reinforcing Testing
	3.2 Automated Testing Infrastructure
	3.3 Discussion

	4 Conclusion
	References

