
Interactive Asynchronous Online Computer Architecture
Education
Ellen Spertus
Mills College

Oakland, California, USA
ellen.spertus@gmail.com

ABSTRACT
The COVID-19 pandemic necessitated courses being moved online
and preferably made asynchronous. This was particularly challeng-
ing for small liberal arts colleges, whose faculty and students are
used to close interaction. This paper describes the set of interactive
asynchronous mini-lectures and online lab assignments used for
an undergraduate computer architecture course at Mills College.
The materials, which follow best practices for active learning, are
available online for faculty at other institutions to use and modify
under a Creative Commons license. We also discuss the pros and
cons of making the course self-paced.

CCS CONCEPTS
•Applied computing→ E-learning; Interactive learning environ-
ments; • Social and professional topics → Computer science
education.

KEYWORDS
online education, computer architecture education, active learning,
Articulate 360, Storyline 360, CircuitVerse, EDA Playground
ACM Reference Format:
Ellen Spertus. 2021. Interactive Asynchronous Online Computer Archi-
tecture Education. In Proceedings of Workshop on Computer Architecture
Education 2021 (WCAE ’21). ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In March 2020, faculty around the world had to move courses on-
line because of the COVID-19 pandemic. At many schools, most
classes were held online for the 2020-2021 academic year and may
remain online through fall 2021. While difficult for everyone, a
particular challenge for small liberal arts colleges was maintain-
ing the expected close connection between faculty and students.
Merely putting prerecorded PowerPoint lectures online would not
be acceptable.

The undergraduate Computer Architecture course at Mills, a
minority-serving women’s college in Oakland, California, is usu-
ally taught with two weekly 75-minute lecture/recitation sections

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WCAE ’21, June 17–19, 2021, Valencia, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

with 10-20 students and TA-staffed hours to support hardware and
software laboratory assignments. We spent the summer and fall
of 2020 moving the course online and would like to share the ma-
terials we developed and what we learned with faculty at other
institutions.

The pandemic not only prevented students from gathering for
classes but also resulted in many students moving from campus
to their family homes, where they lacked the privacy or reliable
internet access required for synchronous remote education. Hence,
an asynchronous solution was needed, and we decided to make the
class self-paced. Similarly, students were unable to access computer
labs where there was necessary hardware, computers capable of
running CAD software, and System-on-a-Chip boards for Verilog
assignments, requiring the lab assignments to be rewritten. Despite
the difficulties, we were committed to maintaining both rigor and
interaction.

The next sections of this paper describe the interactive lessons
that replaced lectures (Section 2), the new lab assignments (Sec-
tion 3), and our decision to make the course self-paced, with no
late penalties (Section 4). Grading and testing are discussed are
discussed in a separate paper [5]. The final section of this paper
presents our conclusions and invites others to make use of or build
on our work.

2 MINI-LECTURES
STEM teaching specialist Cynthia Brame recommends these strate-
gies to promote active learning in video lectures [1]:

• Packaging video with interactive questions.
• Using interactive features that give students control.
• Using guiding questions.
• Making video part of a larger homework assignment.

We applied all of these strategies.

2.1 E-Learning Suite Choice
The campus did not provide support for online learning beyond
Canvas, the learning management system already in use, and reim-
bursement for equipment such as video cameras and microphones.

We were new to online education and began by evaluating e-
learning software, rejecting some systems due to their high price
(iSpring Suite and Elucidat), inability to import PowerPoint (Koan-
tic), or inability to create interactive truth tables (Adobe Captivate).
Our final choice was Articulate 360 due to its functionality, docu-
mentation, and active support forums. Costing $499 for a one-year
license, it was by far the most expensive part of the course and
the only software that we paid for. It is worth noting that a free
30-day trial is available, making it possible for an instructor to mod-
ify our materials for their course without buying a subscription.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WCAE ’21, June 17–19, 2021, Valencia, Spain Ellen Spertus

Presentations created by Articulate 360 can be viewed without a
license.

Articulate 360 is a suite consisting of a number of programs and
services. The ones we used were:

• Storyline 360 for creating interactive e-learning lessons
• Replay 360 for creating (non-interactive) instructional videos
• Review 360 for hosting the lessons generated by Storyline
360

Of these, only Storyline 360 was essential. We could have created
instructional videos for free with Screencast-O-Matic and hosted
our generated lessons on any web server.

2.2 Storyline 360
Storyline 360 creates “stories”, which we refer to as “mini-lectures”,
out of sequences of slides, which can accept input and run arbitrary
calculations to determine what is displayed next. An example of a
non-interactive slide is shown in Figure 1. The top portion shows
all of the elements that students will see and hear, including a video
of the instructor. The bottom portion shows a timeline that controls
when elements appear or disappear. When the slide starts, some
visual elements appear and a video of the instructor begins playing
when the slide starts. The textboxes with the labels “iOS” and “OS
X” appear at specified later times in sync with what the instructor is
saying. Instructors wishing to adapt the slides for their own classes
could re-record the video and manually change the start times for
the labels to match their delivery.

If this were all Storyline 360 could do, it would be no better than
PowerPoint. The next section describes the interactive features.

2.3 Interactive Mini-Lectures
Although we did not read Brame [1] until preparing this paper, we
found that our practices followed her recommendations for student
engagement:

(1) Keep each video brief.
(2) Use conversational language.
(3) Speak relatively quickly and with enthusiasm.1

Specifically, she wrote that these strategies would increase the
percentage of each video that students watch, decrease mind wan-
dering, and create “a sense of social partnership between student
and instructor”.

2.3.1 Embeddings. Almost all slides contained a video of the in-
structor, which began playing when the slide appeared, and the
slide advanced when the video completed.

The simplest interactive slides were ones that let the student
control the playing of additional audio and video, such as when
the instructor introduced YouTube video clips of Danny Hillis or a
biography of George Boole. For security reasons, the user needed
to click play to start externally hosted videos.

A slightly more interesting example was when the instructor
introduced the term “algebra” and gave its etymology, the title
of the book The Compendious Book on Calculation by Completion

1A downside of speaking quickly is that it could make speech hard to understand for
students for whom English isn’t their first language. This could be addressed with
closed captions, which can be manually added in Storyline 360 but are not generated
automatically.

Figure 1: A partial screenshot of Storyline 360 showing a
slide and the associated timeline. Most of the elements ap-
pear when the slide starts, but the text boxes containing
“iOS” and “OS X” appear approximately 12.75 and 14.5 sec-
onds after the start.

and Balancing, whose original (long) Arabic name contains “al-
ğabr”. After the instructor explained this and played a recording
we commissioned of an Arabic speaker reading the title, a “replay”
button appeared on the screen, enabling the student to replay the
audio as many times as desired. This was implemented by making
a button appear after the recording was played for the first time
and adding the “trigger”:

Play audio PronunciationAudioClip2
When the user clicks Button1

An example of a more complex embedding is shown in Figure 2,
which introduces not gates and embeds interactive logic from Cir-
cuitVerse, a free cloud-based logic simulator. If the student clicks on
the 1 input to the inverter, the input is toggled to 0 and the output
changes to 1.

Figure 3 shows a 4-bit ripple carry built from full adders. In
addition to toggling the inputs, the student can switch the view
to the implementations of the full adder and the half adder out of
which the full adder is built.

2.3.2 User Input. In addition to containing a simulation, Figure 2
contains input fields, initially containing question marks. As ex-
plained in the video that is played on the slide, students must replace
the question marks with the correct values and click the check mark
on the bottom right to advance to the next slide. If a student gets

Interactive Asynchronous Online Computer Architecture Education WCAE ’21, June 17–19, 2021, Valencia, Spain

Figure 2: A slide as seen in a web browser with input fields
and a live not gate, embedded from the website Circuit-
Verse.org.

Figure 3: A ripple carry composed of full adders, composed
of half adders. Students could view and toggle the inputs of
any of these elements.

a question wrong, they receive visual or audio feedback and are
encouraged to try again.

Other slides combine button-controlled media with user input,
such as a slide showing how to convert from base-two to base-ten,
then asking the user to do a conversion (Figure 4). In addition to
displaying input fields, a button labeled “HELP!!!” appears for stu-
dents unable to answer the question. It introduces a YouTube video
demonstrating (in a different way) how to solve the problem. Hint
buttons in other mini-lectures navigate the student to otherwise
hidden slides.

Figure 4: A slide in which the user can enter input in the
gray box or request help.

Different types of user input are possible. Figure 5 shows a se-
quence of slides used in teaching Karnaugh Maps. In the first step
(a), the student must fill in each text box with the appropriate values
for a given truth table. If they enter a wrong value, they receive
immediate audio feedback. Next (b), the student must drag a shape
over the appropriate portion of the Map. Finally (c), the student
must click on a button to select the right formula. For each incor-
rect answer, an audio clip is played. For example, if they select A
or ~A, they hear: “No, the formula wouldn’t include A because A
is sometimes 0, sometimes 1 in the region.” If they select ~B, they
hear: “No, ~B would be correct if B were always 0 in the red region,
but B is always 1.” Additional slides, not shown, have the user select
the remaining region and enter its formula before providing the
full formula for the Map.

In another Karnaugh Map problem where the user types in a for-
mula for a region (~C), we used JavaScript to select the appropriate
audio feedback.

var player = GetPlayer();
var guess = player.GetVar("TextEntry19").trim();
if (guess === "C" || guess === "c") {

player.SetVar("Message", "C");
}
else if (guess.includes("A") || guess.includes("a")) {

player.SetVar("Message", "A");
}
else if (guess.includes("B") || guess.includes("b")) {

player.SetVar("Message", "B");
}
else if (guess.includes("~")) {

player.SetVar("Message", "Not");
}
else if (guess.includes("&")) {

player.SetVar("Message", "And");
}
else if (guess.includes("|")) {

player.SetVar("Message", "Or");
}
else {

player.SetVar("Message", "Other");
}

Separate triggers played different audio clips depending on the
value that Message was set to. For example, if their formula was “C”
or “c” (correct), they heard: “Woo hoo! You got it! The answer is C.
Choosing the largest region gave you a very simple formula” and
the slide advanced. If their formula had unneeded terms, operators,

WCAE ’21, June 17–19, 2021, Valencia, Spain Ellen Spertus

Figure 5: A sequence of slides in which the student (a) fills in a Karnaugh Map for a given truth table, (b) drags a shape over
the largest region, and (c) selects the formula for the region.

Figure 6: A slide in which the bits entered by the user on the
left affect the corresponding coefficients on the right half
of the slide and the result (currently -4) in the center of the
slide.

or other characters, they received a tailored message and were
encouraged to try again or ask the instructor for help.

In the mini-lecture introducing two’s complement notation, stu-
dents are asked to determine the smallest (most negative) number
than can be expressed in 4 bits. As they enter 1s and 0s in the four
bit positions, the corresponding coefficients on the right and the
sum in the center are updated. When they click the submit button
(not shown), they are told if they got the correct answer (-8) or
invited to try again with an appropriate message if their answer
was incorrect. If the user lacks the fine motor ability to enter the
bits, they can press the blue button to get a multiple-choice version
of the problem.

Figure 7 shows how a student’s actions affect which slides are
shown. Slide 2.8 asks the student to write some assembly code
before advancing to the next slide (2.9), which instructs the student

Figure 7: Control flow of slides, depending on user behavior.

to click on one of 3 possible answers (2 of which are correct) or to
contact the instructor if their answer is not shown. Their choice
determines which of 3 different slides they see next. If the student
chooses the wrong answer, slide 2.11 is shown, which explains why
the answer is incorrect and invites them to try again. If the student
clicks the blue button, which is labeled “try again”, slide 2.8 is again
displayed. Slides 2.10 and 2.12 are shown in response to correct
answers.

2.3.3 Survey Results. We asked all 13 students who began the
course to complete a survey evaluating different aspects of it. Ten
of the students completed the survey. As shown in Table 1, only one
student disagreed with the statements “I enjoyed the mini-lectures”

Interactive Asynchronous Online Computer Architecture Education WCAE ’21, June 17–19, 2021, Valencia, Spain

and “Answering automatically-graded questions was helpful”; the
rest responded positively or neutrally. Most students found it help-
ful to be able to stop and replay the material but did not feel doing
so was more time-consuming than regular lectures. We were con-
cerned that the mini-lectures might be buggy, since they had to
run on several different desktop and mobile browsers and we were
inexperienced with the software, but only 3 students agreed the
slides were buggy. Two of these students tended to work ahead
of their classmates and reported bugs, which we fixed, giving the
slower students a better experience.

2.4 Pre- and Post-Lesson Questions
Brame writes that providing guiding questions for videos “may
increase germane cognitive load, improve memory via the testing
effect, and improve student self-assessment” [1]. Darby and Lang
agree that “[a]n effective and simple way to create . . . engagement
and add accountability is to include a short, graded assessment after
each required video” [2].

Before opening each mini-lecture, students were shown related
questions that they needed to answer afterwards (or occasionally
beforehand). For example, before the first lecture, “What is a Com-
puter?”, students were instructed to take a few minutes to think
about and give a definition for a computer, without looking any-
thing up. Writing prompts for after the lecture were:

(1) What was your first computer, and how did you use it?
(2) If microprocessors keep getting smaller and cheaper, how

might they be used 20 years from now? [This alluded to a
story told by Danny Hillis in an embedded video.]

(3) Is there anyone or anything from the history of computers
that you wish I’d mentioned?

(4) Was any part of the lecture unclear?
Some later lectures had short technical questions, such as asking

a student to find a formula for a control bit or convert a snippet
of Java code into assembly language. These allowed the student
to immediately practice what they learned, replaying parts of the
lesson if necessary, and get feedback within a few days from the
instructor.

Other questions tied the material to the student’s life. For exam-
ple, after a lesson on metric prefixes and the history of hard drives,
students were asked:

• What’s the largest metric unit you’ve had cause to use out-
side of school? What was the smallest?

• Have you bought storage recently? How much did you pay,
in what year, for how much memory? How did you feel
about the price? Were you aware how prices had fallen?

• Do you still run out of disk space?
Students were also invited to ask questions about anything they
found unclear.

Although the questions did not count toward the semester grade,
students completed them. The instructor answered any questions
they contained (or asked students to meet with her for an explana-
tion) and left comments on the responses. She felt this helped her
get to know the students and give them personalized attention. As
Table 2 shows, students generally thought completing the writing
prompts was worth the time it took and that it enabled them and
the instructor to get to know each other.

One student wrote:
Sometimes when people talk about reading a book
they mention the issue of “I read 2 pages and did
not sustain any of that information" So without the
prompt questions I would’ve watched 4 lectures and
not had a stop and check in with myself.

2.5 Live Sessions
There were two lectures that we felt would be difficult to present
asynchronously. Since the class was self-paced, the instructor met
with students synchronously online in groups of 2–3 for these topics.
The first was translating loops into assembly language, where the
instructor presented and explained examples and then had students
create flowcharts and assembly code, which they reviewed together.
This also gave her the opportunity to clear up confusion on earlier
assembly programming topics, such as procedure calls.

The other synchronous session was for introducing the simple
microprocessor that was the subject of the last lab assignment
and a final exam question. While it could have been presented
asynchronously, so few students (6) were still in the course by the
end of the semester (a point discussed below) that talking through
the material in small groups was a better use of instructor time
than creating a mini-lecture, and this allowed the instructor to
give immediate feedback on a traditionally in-class exercise to
determine the control bits for the instruction set and to write a
factorial function for the microprocessor.

Although the survey did not ask about the live sessions, one
student volunteered that they “were helpful because they were in
a small group of people and everyone could ask a question if they
needed to and that was really nice.”

3 LAB ASSIGNMENTS
The ordinary version of the class has 6 lab assignments, all of which
were replicated in the online version.

3.1 TTL Lab
The first lab assignment is to design and build a full adder using
TTL components. Ordinarily, students use semi-portable digital
trainers weighing approximately 20 pounds each. While we still
made these available to students living on or near campus, we
provided inexpensive alternatives that we shipped to students not
living nearby. In addition to providing each student with the or-
dinary tools and supplies (multiple colors of wire, wire strippers,
plastic logic templates, chip pullers, pliers, TTL chips, and logic
probes), we provided non-powered breadboards, discrete LEDs, and
1 KΩ current-limiting resistors from our inventory. To power the
breadboards, we bought MB102 breadboard power supplies with
9V battery clips (Figure 8), which were surprisingly inexpensive (4
sets for $8.99 from Amazon) but had a high failure rate, requiring
us to test each set before sending it out and either allowing time to
receive replacements or ordering twice as many as were needed.
While the listing said that the MB102 could be powered through a
USB cable, reviews indicated that this was not the case, so we used
9V batteries.

We shipped the supplies in USPS Priority Mail flat-rate boxes
($15.05 each), which was generally fast, except for one shipment

WCAE ’21, June 17–19, 2021, Valencia, Spain Ellen Spertus

Table 1: Survey respondents’ level of agreement with statements about the mini-lectures.

Strongly Strongly
Agree Agree Neutral Disagree Disagree

I enjoyed the mini-lectures. 4 3 2 1 0
Answering automatically-graded questions was helpful. 3 4 2 1 0
Being able to stop and replay material helped me learn the material. 7 1 1 1 0
The mini-lectures took more time than regular lectures would have. 0 2 4 1 3
The mini-lectures were buggy. 0 2 4 1 3

Table 2: Survey respondents’ level of agreement with statements about pre- and post-lecture questions.

Strongly Strongly
Agree Agree Neutral Disagree Disagree

Completing the writing prompts was a waste of time. 0 1 5 2 2
I felt I got to know Ellen through the lessons and comments on my responses. 3 4 2 1 0
I felt Ellen got to know me through my responses. 1 6 3 0 0

Figure 8: A breadboard with an MB102 power supply con-
nected to a 9V battery, not shown.

from San Francisco to nearby Oakland, which traveled unneces-
sarily across the country and back over a period of more than a
week. Using flat-rate postage enabled us to purchase and email
return postage for the students to print and use when returning
the supplies.

Instead of teaching students how to use the equipment and help-
ing them debug their circuits in person, we had to do both remotely
(via Zoom), which worked surprisingly well.

3.2 Simulation/CAD Labs
We have one assembly language lab and 4 CAD labs. We use MARS
for assembly language simulation, which was unchanged when we
moved online. Traditionally, we use Altera Quartus Prime Lite for
the CAD labs, beginning with schematic capture and culminating
in burning Verilog code onto Terasic DE1-SoC boards. Because the

software is so complicated, the assignments are long and require
much TA support.

For the online course, we chose a cloud-based solution because
(1) some of our students did not have powerful computers at home
and (2) we did not need the ability to program FPGAs. We chose
EDA Playground, a free cloud-based solution.

In normal years, the first Verilog assignment includes working
through a 41-page Quartus Prime tutorial and then using schematic
capture to simulate the full adder they implemented in the hardware
lab. Because EDA Playground is so simple, there was no need for
a tutorial. Students were given a Verilog implementation and test
bench for a half adder, which were explained in a video, and were
required to extend it to a full adder.

The previous time the instructor taught the course with Quartus
Prime, students reported spending between 1:45 and 7 hours on
the assignment, with an average of 3:35. With EDA Playground,
students reported spending between 1:30 and 2 hours, with an
average of 1:50.

The remaining CAD labs covered exactly the same Verilog as in
the ordinary course, requiring students to:

• Add overflow detection to the MIPS ALU provided in the
textbook (to begin learning Verilog and improve their under-
standing of two’s complement).

• Implement a 4-way multiplexer out of 3-way multiplexers
(to understand how more complex elements could be built
from simpler ones and begin creating Verilog modules).

• Complete the implementation of a microprocessor by creat-
ing the control unit and the top-level module that instanti-
ated and connected the other modules. Students were given
a factorial program for the processor and required to write a
fibonacci program.

The process went so much more smoothly in EDA Playground
than in Quartus Prime that it will be tempting to keep using the
former, although that would deprive the students of the opportunity
to burn the Verilog onto hardware. We might make the use of

Interactive Asynchronous Online Computer Architecture Education WCAE ’21, June 17–19, 2021, Valencia, Spain

Table 3: Survey respondents’ level of agreement with statements about the course being self-paced.

Strongly agree Agree Neutral Disagree Strongly disagree

The lack of due dates. . .
. . . lowered my stress level. 6 1 1 1 1
. . . gave me flexibility when I needed it. 5 2 1 2 0
. . . caused me to prioritize other classes over this one. 3 4 2 1 0
. . . led me to procrastinate. 2 3 2 2 1
. . . led me to spend more time on assignments. 4 2 3 1 0
. . . led to my having to withdraw from the course. 1 0 1 4 4

0 1 2 3 4 5 6 7 8 9 10

A. Strict deadlines

B. Late penalties

C. Small number of tokens

D. Large number of tokens

E. Self-paced

F. Choice of below policies

Time in SecondsVery Poor Poor Average Good Very Good

Figure 9: Ratings of Different Late Assignment Policies

Quartus Prime a challenge assignment for students wishing to earn
the highest grades or leave it for a classroom demonstration.

4 LATE ASSIGNMENT POLICIES
As alluded to above, the course had a high attrition rate. Of the 13
students who began the course, 5 completed it on time, 1 completed
it a month late, and 7 withdrew from the course, as late as the last
day of class, which was permitted under special pandemic rules.
Typically, attrition rates are low (no more than 10%) for upper-
division courses, so this was extraordinary. It is unclear how much
was due to each of the following factors:

(1) students’ external issues (such as mental and physical illness
and poor Internet access)

(2) the asynchronous format
(3) the course being self-paced

While students were given recommended due dates for each assign-
ment (including mini-lectures), they were told there would be no
late penalties, and the scheduled class time (two 75-minute sessions
per week) was used as office hours. Perhaps predictably, almost all
students quickly fell behind. In an attempt to keep students on track,
we announced a few weeks into the semester that attendance of
class Zoom sessions was now mandatory, during which they could
work at their own pace, with the instructor available to answer
questions. Despite this change in policy and students’ perennial

optimism about their ability to catch up, most students were unable
to do so.

As shown in Table 3, students generally agreed that the lack of
strict due dates lowered their stress levels and gave them needed
flexibility, but many acknowledged that it caused them to prior-
itize other classes, to procrastinate, and to spend more time on
assignments (some productively, some due to perfectionism). With
the exception of one student, they did not, however, blame their
attrition on the policy.

Figure 9 shows students’ ratings of different hypothetical late
assignment policies, with more lenient policies higher up the y-
axis. The bottom row shows that students rated policy A, strict
deadlines (with no late assignments accepted), as very poor (5),
poor (4), average (1), or good (1); none rated it a very good policy.
Students much preferred policy B where late assignments were
accepted with a per day penalty; all students except for one rated
it higher than not accepting late assignments. Policies C and D
involved tokens that a student could use to turn in an assignment
one day late without penalty. All students except for (the same)
one preferred having a small number of tokens (C) over having
no tokens (B) or rated the options equally. Perversely, having a
small number of tokens (C) was generally preferred over having
a large number of tokens (D), where the boundary was 8 tokens.
Policy E was the one used in the course, self-paced with no late
penalties. While we would have predicted that students who passed
the course would have rated it highly and those who did not would

WCAE ’21, June 17–19, 2021, Valencia, Spain Ellen Spertus

not, there was no clear correlation. (Two of the 4 students who
rated it “poor” or “very poor“ passed the course, as did 1 of the 2
who rated it “average” and 3 of the 4 who rated it “good” or “very
good”.) Option F was to let students choose among the policies,
which none of the students rated negatively.

One student who did not complete the course commented:

I think that there needs to be some sort of structure
and accountability system. Right now people have a
lot of personal stuff that they are dealing with and
when you have really flexible late policies it feels like
you have time to put those things aside to maybe
focus on something more urgent, but then things get
away from you.

Another student who did not complete the course and volunteered
to the teacher that they had ADHD, wrote:

[L]ate assignment penalty can be ablest2 to some stu-
dents. But I also think no deadlines/due dates can lead
to unproductive perfectionism which I have experi-
enced.

A student who completed the course wrote:

[B]eing able to go at my own pace really helped me.
Towards the beginning of the semester, when there
wasn’t much happening in my other classes, I was
able to get ahead, so that once my other classes picked
up I could dedicate more time to those.

Clearly, there is no one best policy. We are still debating what to
do when the course is next offered.

5 CONCLUSION
We used free and commercial software to move an introductory
undergraduate computer architecture course online during the pan-
demic, following best practices for active learning, such as creating
short interactive videos packaged with guiding questions. Students
largely enjoyed the mini-lectures and felt their learning was fa-
cilitated by the automatically-graded questions and the ability to
replay portions. Despite the asynchronous format, they and the
instructor felt they were able to get to know each other, which is
helpful for advising, mentoring, and retention [3].

The course had high attrition. We do not know how much was
due to the format, the decision to make it self-paced, and students’
external challenges. We suspect it was an interaction among those
factors: students living off campus in situations not conducive to
learning prioritized other courses with strict deadlines over our
course and eventually fell too far behind to recover. When asked
what policies they advised for future semesters, students preferred
policies with some leniency over the extremes of no deadlines or
no late assignments accepted.

We hope that the materials we created can be useful to others.
We invite other computer architecture instructors to adapt and
reuse our material, either as primary or supplementary material,
and we have done a soft launch of a free non-credit Canvas course.
Access to both can be obtained at the author’s website [4].

2The term “ableist” refers to prejudice or discrimination against people with disabilities.

REFERENCES
[1] Cynthia J. Brame. 2016. Effective Educational Videos: Principles and Guidelines for

Maximizing Student Learning from Video Content. CBE—Life Science Education
15, 4 (Winter 2016), 1–6. https://doi.org/10.1187/cbe.16-03-0125 Published online
13 October 2017.

[2] Flower Darby and James M. Lang. 2019. Small Teaching Online: Applying Learning
Science in Online Classes. Jossey-Bass, San Francisco, CA.

[3] Ernest T. Pascarella. 1980. Student-Faculty Informal Contact and College Outcomes.
Review of Educational Research 50, 4 (1980), 545–595. https://doi.org/10.3102/
00346543050004545

[4] Ellen Spertus. 2021. Computer Architecture Teaching Resources. https://
ellenspertus.com/comparch-resources.

[5] Ellen Spertus and Zachary Kurmas. 2021. Mastery-Based Learning in Undergrad-
uate Computer Architecture. InWCAE ’21: Proceedings of the 2021 Workshop on
Computer Architecture Education. ACM, Valencia, Spain.

https://doi.org/10.1187/cbe.16-03-0125
https://doi.org/10.3102/00346543050004545
https://doi.org/10.3102/00346543050004545
https://ellenspertus.com/comparch-resources
https://ellenspertus.com/comparch-resources

	Abstract
	1 Introduction
	2 Mini-Lectures
	2.1 E-Learning Suite Choice
	2.2 Storyline 360
	2.3 Interactive Mini-Lectures
	2.4 Pre- and Post-Lesson Questions
	2.5 Live Sessions

	3 Lab Assignments
	3.1 TTL Lab
	3.2 Simulation/CAD Labs

	4 Late Assignment Policies
	5 Conclusion
	References

