Chapter 4

Implementation

This chapter goes into low-level detail about the implementation of the Squeal interpreter. It is likely
to be of interest to anyone modifying the Squeal interpreter or building a similar system. Readers
who are primarily interested in the conceptual ideas of the thesis or in using the system may want
to skip to the next chapter, which discusses applications.

The Squeal interpreter is written in Java and runs on a Sparc-20/50 workstation. It communicates
through a network using TCP/IP with an Intel-based machine running Microsoft SQL Server. This
chapter describes the classes in the Java implementation of Squeal. Outside tools and classes used
are:

e Java Compiler Compiler [36], discussed below

e The OROMatcher classes for Perl5 regular expressions [29]
e The HtmlStreamTokenizer class for parsing HTML 8]

e Santeri Paavolainen’s implementation of MD5 [30, 34]

To distinguish standard Java classes from those defined for Squeal, Squeal class names are underlined.

4.1 Database state

The class DBstate is used to encapsulate database state. When Squeal is started, a connection to the
SQL server is opened and an instance of DBstate is created. The connection is closed when Squeal
is terminated. DBstate has one public member variable, stmt1, which is of type java.sql.Statement
and is used to send a query or update to the SQL server.

4.2 Column

The column class is used to represent each column in tables on the SQL server. The class is needed
in interpreting SELECT statements and in displaying results. Member variables (Figure 4-1 hold each
column’s name and type as well as the Table instance (defined below) of which they are part.

4.3 Tables

4.3.1 Purpose

In addition to the SQL tables stored on the SQL server, the Squeal implementation keeps information
locally about every table accessible to the user or system. This is used for interpreting SELECT
statements and when user tables are created, deleted, or modified. Every table is an instance of
the Table class. Figure 4-2 shows the hierarchy beneath Table, including instance variables. All of

48

public String name
The name of the column
public String type
The type of the column
public Table table
The Table instance of which this is a component

Figure 4-1: Member Variables for Column

Table
computation
creation
UserVisibleTable
AutomaticTable (section 3.5.2)
link (section 2.2.3)
page (section 2.2.1)
parse (section 2.2.1)
rcontains (section 2.2.4)
rlink (section 2.2.4)
tag (section 2.2.2)
DerivedTable (section 3.5.3)
att (section 2.2.2)
header (section 2.2.3)
list (section 2.2.3)
UserReadableTable (section 3.5.1)
urls (section 2.2.1)
valstring (section 2.2.1)
UserDefined Table

Figure 4-2: Class Hierarchy of Tables

49

static Hashtable tables
Hash table mapping table names to Table instances
static Vector url_id_columns
The set of all columns defined in the system of type url_id (section 2.2.1)
public String name
The name associated with the Table instance
public Vector columns
The set of Column instances associated with the Table instance

Figure 4-3: Member Variables for Table

creation
colname type notes
tab VARCHAR(15) primary key
stamp DATETIME
def value_id INT

Table 4.1: The creation relation

the tables discussed up to now have been subclasses of UserVisibleTable. These include the tables
defined in the ontology as well as any tables created by the Squeal user. The Squeal internal tables,
which are not subclasses of UserVisibleTable, are discussed later in this section.

4.3.2 Detalils

There are two static variables associated with Table:
1. tables, a HashTable that maps strings to the Table with that name

2. wurl_id_columns, a Vector containing the instances of Column that have type “url.id”. This is
needed to implement static method uril_id_fizup, which updates the values of changed url_ids,
as discussed in Section 2.2.1.

Associated with each Table instance are the table’s name and a Vector containing the columns.
Figure 4-4 shows the public methods associated with Table. They support the creation and
deletion of SQL tables and provide access to the Column information.

4.3.3 Squeal internal tables

Not previously discussed are the Squeal internal tables, creation and computation. These are not
visible to the Squeal user.

creation

The creation table, shown in Table 4.1, is used to keep track of user-defined tables across execution
sessions. Table names are limited to 15 characters, while the definition string is unbounded. When
the user creates a table, a line is added to creation, a new SQL table is created on the server, and
a UserReadableTable instance is created. If a table is deleted, the corresponding line is removed
from creation, the SQL table is dropped, and the instance is freed. Upon Squeal start-up, all of
the entries in creation are interpreted, to re-create the UserReadableTable instances.

50

public static Table createTable(DBstate dbs, String def)
Create a Table instance from a definition string, creating a
table on the SQL server if necessary
public static void init(DBstate dbs)
For each definition in the creation table, call createTable
public static Table getTable(String n)
Return the Table instance associated with a name, or null
public static void dropTable(DBstate dbs, String name)
Permanently delete a Table instance and the associated
SQL table, given its name
public boolean existsP(DBstate dbs)
Check whether a table with name name exists on the SQL server
public String createIfNecessary(DBstate dbs)
Create on the SQL server a table with the characteristics of the instance
variable, unless the table already exists
public Column columnMatch(String arg)
Return the Column instance associated with a name, or null
public static void url_id_fixup(int old.url_id, int new.url_id, ...)
In all columns of type url_id, replace values of 01d_url_id with new_url_id

Figure 4-4: Methods Defined for Table

computation
colname type notes
compute_id INT primary key
stamp DATETIME
tab CHAR(15)
column CHAR(15)
value VARCHAR(255)
helper CHAR(15)
num INT

Table 4.2: The computation relation

computation

Purpose The computation relation is used to keeps track of what implicit or explicit FETCH
statements have been performed and when. This can be used to prevent unnecessary recomputation
of recently-computed information or to facilitate recomputation of stale information. Each line of
the computation relation can be thought of as a thunk [1] bundled with the time of its execution
and a pointer to its results.

Details The columns of the compute relation are shown in Table 4.2. Each computation relation
has a unique numeric compute_id. Also stored are the table name, column name, and column
value. For statements using helper and num arguments, these also appear in the table. The page,
rcontains, rlink, and tag tables also have a compute_id column, not previously discussed. This
provides information about when each line of these tables was created. The other tables do not have
compute_id relations, because they can be deduced from tables on which they depend. While the
information currently is not used, it would be easy to modify the system to reload pages that were
judged to have expired.

o1

compute_id stamp tab column value
7875 Oct 8 1997 6:19PM rlink source_url.id &3&5&

Table 4.3: Entry in computation table created in processing the Squeal statement “FETCH
rlink(dest_url_id=3&5)”

For a recomputation to be prevented, the old and potential tab and column columns must be
identical, and the value columns must be identical except in the case of conjunctions and disjunc-
tions. For conjunctions and disjunctions, the value string is the set of terms, delimited by “&” or
“”, respectively. Table 4.3 shows the computation entry created by the Squeal statement:

FETCH rlink(dest_url_id=3&5);

If a subsequent delimited conjunction is a substring of the value in the table, e.g., “&3&5&”, the
computation is not redone. For disjunctions, the later value must be a superstring of the original
value. In any case, the terms must appear in the same order for a match to be noted, since textual
comparison is used.

The helper and num fields are set when tab is rcontains or rvalue, to indicate which Web
search tool was used as a helper and how many items were requested. If the user issues two FETCH
statements involving rlink that have different helper values, two Web requests will be made. If
two statements are identical except for the num values, the second FETCH will only be performed if
its num value is the greater one.

4.4 Exceptions

Class ParasiteException represents Squeal exceptions. It can be instantiated and has the following
four subclasses:

e QuitException, thrown when the “quit” statement is executed.
e UnboundVariableException, thrown when a reference to an undefined variable is made.

e UnsupportedProtocolException, thrown when an attempt is made to retrieve a URL whose
protocol is not “http”.

e UnsupportedURLException, thrown when an attempt is made to retrieve a malformatted
URL.

4.5 Representation of variables

4.5.1 SymbolTable

The SymbolTable class is built on top of java.util. HashTable. The hash table component is used to
map variable names (of type String) to values (of type Object). A member variable parent of class
SymbolTable is either set to null or to a parent SymbolTable. Methods are defined to get or put the
value of a symbol as well as to check whether a symbol is defined (Figure 4-5).

4.5.2 Bindings

The Bindings class is a subclass of java.Util.Hashtable and is used to represent stack frames. Specif-
ically, the inherited hashtable is used to represent formal-actual argument pairs and a parent symbol
table. A Binding instance is created when a Squeal procedure call is made. It is also used to im-
plement FETCH statements. Methods are defined to add, remove, access, or check for the existence
of a binding, as shown in Figure 4-6. The methods that create Strings are used to support the
Computation table.

52

public synchronized boolean containsKey(Object key)

Return true if super.containsKey(key) is a key in the constituent hash table.

If not and if parent is null, return false. Otherwise, return parent.containsKey(key).
public synchronized Object get(Object key)

If super.containsKey(key), return super.get(key).

If not and if parent is null, return null. Otherwise, return parent.get(key).
public synchronized Object put(Object key, Object val)

Execute super.put(key, val).

Figure 4-5: Methods Defined for SymbolTable

public synchronized Object put(Object key, Object val)
Call parent.put (key, val)
public synchronized Object get(Object key)
If super.containsKey(key), return super.get(key).
If not and if parent is null, return null. Otherwise, return parent.get(key).
public synchronized Object remove(Object key)
Call parent . remove (key)
public void extend(Vector v)
For each namedArg na (Section 4.9.1) in v,
call put (na.name, na.value).
public synchronized boolean containsArg(Object key)
Return true if super.containsKey(key) is a key in the constituent hash table.
If not and if parent is null, return false. Otherwise, return parent.containsKey(key).
public String toConjunction()
Return a string representing each key-value pair (k,v) as “< k >=< v >",
delimited by “ AND ” (e.g., “x =1 AND y = 27).
public String keysString()
Return a comma-separated list of the keys in the constituent hash table.
(This if for debugging purposes.)
public String valuesString()
Return a comma-separated list of the values in the constituent hash table.
(This if for debugging purposes.)

Figure 4-6: Methods Defined for Bindings

93

SimpleNode
NodeWithRequiredName
NodeWithOptionalName
NodeContainingList
NodeContainingParenthesizedList
BinaryNode

Figure 4-7: Class Hierarchy of Parser-Generated Nodes

4.6 Parser

Squeal is parsed by the Java Compiler Compiler (JavaCC) [36]. The Squeal grammar, with actions,
is shown in Appendix B. JavaCC creates LALR parsers with lookahead one, except when greater
lookaheads are explicitly specified in a region of the grammar. The maximum lookahead needed for
the Squeal grammar is two.

This section describes the data objects produced by the parser, all of which are subclasses of
SimpleNode, as shown in Figure 4-7. The parser prepends “AST” (for “abstract syntax tree”) to
terminal names to create class names. Table 4.4 shows SimpleNode and its direct subclasses. Parser
node classes are shown in Table 4.4.

4.6.1 SimpleNode

The class SimpleNode is provided by JavaCC and modified for Squeal. Methods provided by
JavaCC provide access to child nodes. A key method defined for Squeal is toSQL, which con-
verts a SimpleNode to a SQL representation so it can be passed to the SQL server. If the node has
only one child, the return value is the result of calling toSQL on the child. If there are multiple
children, the results of recursive calls to toSQL are concatenated, separated by space characters.
Subclasses of SimpleNode either inherit toSQL (as in the case of ASTnumericLiteral, which recur-
sively calls toSQL for its one child) or override it (as in the case of ASTcell, which prints its two
children separated by a period). Other methods allow a child node to be removed (in order to get
rid of an unneeded argument to FETCH) and to find all the tables, cells, or variables referred to in a
statement, which is necessary when interpreting SELECT statements. A complete list of methods is
shown in Figure 4-8. The following sections describe methods defined for subclasses of SimpleNode.

4.6.2 NodeWithRequiredName

Because so many productions contain a string that needs to be retained in addition to the node
type, there is a class NodeWithRequiredName, of which ASTfuncall is a subclass, with the name
field set to the function name. NodeWithRequiredName defines methods setName and getName
and overrides methods toString and toSQL to include the name.

4.6.3 NodeWithOptionalName

NodeWithOptionalName is similar to NodeWithRequiredName, except that setting the name field
is optional. The methods setName and getName are defined, and toString is overridden, returning
the name if one exists and the empty string otherwise.

4.6.4 NodeContainingList

NodeContainingList is used to represent nodes that consist of a list of child nodes. Specifically, it
represents ASTselectList and ASTtableList. It overrides methods toString and toSQL and defines

o4

public String toString()

Return the identifier associated with the instance (JavaCC)
public int jjtGetNumChildren()

Return the number of children of the node (JavaCC)
public SimpleNode jjtGetChild(int i)

Return the 7** child of the node (JavaCC)
public Object toSQL(SymbolTable symtab)

Return a legal SQL representation of the node and its children
public void findTableNames(Vector v)

Build a vector containing the tables referenced by this node and its children
public void findCells(Vector v)

Build a vector containing the ASTcells referenced by this node and its children
public void findVariables(Vector v)

Build a vector containing the ASTvariables referenced by this node and its children
public void removeChild(SimpleNode child)

Remove the specified child node

Figure 4-8: Methods Defined for SimpleNode, either by JavaCC (as indicated) or purely for Squeal.

SimpleNode NodeWithRequiredName NodeWithOptionalName
ASTecell ASTcolumnDef ASTaggregateExpression
ASTcolumnsList ASTcomputeStatement ASTselectItem
ASTconvertExpression ASTcreateStatement
ASTinputStatement ASTdeffuncStatement NodeContainingList
ASTlistExpression ASTdefprocStatement ASTselectList
ASTnamedArgument ASTdeleteStatement ASTtableList
ASTnamedArgumentList ASTdescribeStatement
ASTnegationExpression ASTdropStatement NodeContainingParenthesizedList
ASTnumericLiteral ASTfuncall ASTargList
ASTorderItem ASTgroupbyDef ASTsymbolList
ASTorderList ASThavingDef
ASToutputStatment ASThelpStatement BinaryOperation
ASTparenthesizedExpression ASTinsertStatement ASTconjunctionExpression
ASTprintStatement ASTletStatement ASTdisjunctionExpression
ASTquitStatement ASTorderbyDef ASTlogicExpression
ASTrelExpression ASTrelRHS ASTproductExpression
ASTselectStatement ASTstringLiteral ASTsumExpression
ASTstar ASTsymbolLiteral
ASTstatement ASTtableName
ASTunaryExpression ASTvariable
ASTupdateStatement ASTwhereDef

Table 4.4: Classes of Nodes Created by Parser

95

method toVector, which creates a Vector, each of whose elements is the SQL representation of a
child node.

4.6.5 NodeContainingParenthesizedList

NodeContainingParenthesizedList is a subclass of NodeContainingList. It overrides toSQL to include
parentheses around the list. It is used to represent ASTargList and ASTsymbolList.

4.6.6 BinaryOperation

BinaryOperation is used to represent binary logical and arithmetic operations. The setOp method
is used to set the operator, and toSQL is overridden to call doBinaryOp, which, in the case of
arithmetic operations, performs the operation if the values of both operands are known, otherwise
returning the operator information with the operand in between, to eventually be passed to the SQL
server.

4.6.7 Context
The behavior of toSQL may depend on the context in which it is called. For example, if the variable

[

x” is undefined within Squeal, the result of calling toSQL on the ASTvariable representing “x”
depends on how it is used:

e If the entire statement is “PRINT x”, then an UnboundVariableException should be thrown.

e If the entire statement is “SELECT x FROM usertable”, the statement should be passed to
the SQL server.

In client mode, the UnboundVariableException would be thrown; in server mode, the representation
appropriate for server access is used. Another use is to provide proper syntax for Strings. For
example, the interpretation of String s, bound to “foo” depends on whether the value will be sent
to the SQL server:

e If the entire statement is “userfunc(s)”, s should be interpreted as foo (without quotes).

e If the entire statement is “SELECT * FROM usertable WHERE col = s”, then s should be
interpreted as ’foo’ (with single quotes).

The Context class has a single instance, which contains a stack, the topmost element of which
indicates whether the system is in “client” or “server” mode. The appropriate value is pushed on to
the stack when a statement is interpreted. By default, it is in “client” mode. The value “server” is
pushed onto the stack upon interpretation of an INSERT, DELETE or UPDATE statement, and popped
at the end of its interpretation. Similarly, “client” is pushed at a function call (in case one is nested
in an INSERT statement, for example).

4.7 Output

Squeal supports five output streams, shown in Table 4.5. They are built on top of a hierarchy
of subclasses of java.io.PrintWriter, shown in Figure 4-9. NullPrintWriter overrides all of Print-
Writer’s write, print, and println methods to ignore their arguments and do nothing. It is used
for an output stream that the user is not interested in viewing. The class LoggingPrintWriter is
instantiated for streams that the user wishes to view. The constructor takes three arguments: an
output stream (e.g., System.out), a name (e.g., “status”), and a PrintWriter logStream, to which
it echoes whatever it prints, with the stream name prepended. By default, logStream is of class
NullPrintWriter and no log is created. If the user requests a log via the command-line interface
(Section 3.6), it is of type LogPrintWriter, which prints everything it is passed to a file, with a time
stamp attached. Figure 4-10 shows an excerpt from a sample log file. The numeric column is the
number of milliseconds since the start time, divided by 128.

o6

name default value purpose

StatusStream System.out prompts and other user-interface communication
OutputStream System.out results of computations

DebugStream (none) messages for debugging purposes

ErrorStream System.err errors

LogStream (none) all of the above

Table 4.5: Streams Used by Squeal

java.io.PrintWriter
NullPrint Writer
LoggingPrintWriter

LogPrintWriter

0

10 status
30 debug
30 debug
30 status
33 debug
33 debug

Figure 4-9: Class Hierarchy Based on java.io.PrintWriter

Creating log at Wed Jul 09 17:16:36 PDT 1997

Opening database

Push: AccessibleBufferedInputStream1dc613f5

Debug: Completed initialization

->

Calling processTree with type class squeal. ASTstatement
Calling processTree with type class squeal. ASTdeffuncStatement

Figure 4-10: Sample Log Output

o7

public static void main(String[] args)
Top-level procedure, containing the call to init and the read-eval-print loop.
public static void init(String[] args) throws ex.ParasiteException
Code to process the command-line arguments, set up the input streams, and call
other initialization routines.
public static void printUsage()
Print information about the command-line interface (section 3.6).
public static Object processTree(SimpleNode node, SymbolTable symtab)
throws ex.ParasiteException
Return the result of evaluating the parsed Squeal statement or expression in node.
public static Object inputFrom(Object argument) throws ex.ParasiteException
Create an input stream to the specified file.
static boolean popInputStack() throws java.io.IOException
Pop the stack of input streams, indicating that input from a stream is complete.
Return true if more input streams are on the stack, false if it is empty.
public static Object Interpret(String s)
Called in order to cause a String to be interpreted as a Squeal statement. Interpret
calls the parser and then processTree.
public static Object get(String s)
Look up symbol s in the top-level symbol table, globSymtab.

Figure 4-11: Methods in FrontEnd

4.8 FrontEnd

The class FrontEnd contains the code to start the Squeal interpreter and to repeat the read-eval-print
loop. During initialization, a member variable globalSymtab of class SymbolTable is created, which
holds environment variables (section 3.6 and any values defined at the top-level in the interpreter.
Another member variable, inputStack, maintains a stack of input streams, initially holding only
standard input. Almost all of program execution occurs within the read-eval-print loop. In each
iteration, a statement is read from the topmost input stream. If it is a file inclusion statement
(in), a handle to the specified file is pushed onto the stack. Otherwise, the statement is passed to
processTree, which consists of a giant case statement to handle different types of Squeal statements.
If processTree throws a QuitException, then the input stack is popped and execution continues with
the new top input stream (or execution ends if the stack is now empty). If processTree returns a
value, it is printed, and the loop is repeated. FrontEnd also contains the method Interpret, which
passes a String to the parser and executes it. The get method is used when other classes need to
access globalsymtab. Figure 4-11 shows a complete list of methods in FrontEnd.

4.9 Miscellaneous

4.9.1 namedArg

The class namedArg is used by parsing routines to represent a formal-actual parameter pair, such as
for the statement: “FETCH(url_id=7)”. The member variables name and value contain the formal
and actual parameters, respectively, “url_id” and 7 in this example. namedArg instances are later
used for creating Bindings instances.

o8

public Vector colNames
The names of the columns
public Vector colsizes
The maximum width of each column
public Vector rows
The set of rows, each element of which is a java.util. Vector containing the
elements of each row public int numCols
The number of columns

Figure 4-12: Member Variables for SelectionResult

4.9.2 Cell

The class Cell is used to represent a cell in a SQL table, e.g., (“utable.colfoo”). Member variables
alias and column contain the table alias and column, respectively, “utable” and “colfoo” in this
example.

4.9.3 Junction

The abstract class Junction is used as a superclass for Conjunction and Disjunctions, which are used
to represent conjunctions and disjunctions in FETCH statements. Fach instance of Junction contains
two member variables: terms, a java.util.Vector whose elements are the conjuncts/disjuncts, and
separator, which is either “&” or “|”. The method toString converts a Junction instance to its
printed representation, e.g., “urlid = 6 | url_id = 7”7, and is used in constructing queries for the
SQL server. The method toQuotedString is similar but quotes each term. The method toList returns
a string containing a comma-separated list of the terms, useful for construction IN clauses of SQL
statements.

4.9.4 Set

The class Set provides a simple implementation of mathematical sets. It implements methods ad-
dElement, union, size, and contains, as well as elements, which returns an Enumeration of the
elements.

4.9.5 SelectionResult

The class SelectionResult is used to represent the results of a SQL SELECT query. Its mem-
ber variables are shown in Figure 4-12. The method display prints the result to the specified
java.io.PrintWriter. The method toObject returns the element of the table, if there is only one, and
throws a ParasiteException otherwise. It is used for statements of the form: “LET n = (SELECT
MAX(url_id) FROM link”.

4.10 Functions and Procedures

4.10.1 UserCallableFunc

Figure 4-13 shows the class hierarchy for user-callable functions, based at UserCallableFunc, which
is an abstract type. UserCallableFunc has a pair of static hash tables, funcHash and helpHash,
used to map function names to the function object and help string, respectively. Methods, including
constructors (which we have not usually shown), can be found in Figure 4-14.

99

UserCallableFunc
UserDefinedFunc
UserDefinedProc
JavaDefinedFunc

Figure 4-13: Class Hierarchy for Functions and Procedures

public UserCallableFunc(String fName, String helpString)
Add (fName, this) to the function look-up table (funcHash) and
add (fName, helpString) to the help look-up table (helpHash).
public UserCallableFunc(String fName)
Add (fName, this) to the function look-up table (funcHash) and
add (fName, “no help available”) to the help look-up table (helpHash).
abstract public Object call(SymbolTable s, Vector v, DBstate dbs)
Apply the associated function with symbol table s, actual parameters and
database statement dbs.
public static UserCallableFunc getFunc(String fName)
Return the function object associated with fName (or null, if none is defined
public static Object call(String s, SymbolTable symtab, Vector v, DBstate dbs)
Apply the function named s to symbol table symtab, actual parameters v,
and database state dbs, throwing a Parasite Exception if no such function exists

Figure 4-14: Methods Defined for UserCallableFunc

60

public class JDFstrcat extends JavaDefinedFunc {
public JDFstrcat() {
super (“strcat”, “Concatenate any number of strings”);
}

public Object call(Vector v, DBstate dbs) {
StringBuffer outputSB = new StringBuffer();

for (int i = 0; i j v.size(); i++) {
Object curObj = v.elementAt(i);
outputSB.append(Utils.unquote(curObj.toString()));

}

return new String(outputSB);

Figure 4-15: Java-Defined Function Strcat

4.10.2 UserDefinedFunc

The class UserDefinedFunc is used to represent functions defined by the Squeal user. As discussed
in Section 3.3, the body of a function is a single expression. When the function is created, the
argument list and body of the function are stored in hashed tables, keyed by the new function’s
name. Upon application, the system verifies that the number of actual parameters is equal to the
number of formal parameters and extends the symbol table to include these bindings, then executing
the procedure body and returning the result.

4.10.3 UserDefinedProc

The class UserDefinedProc is used to represent procedures defined by the Squeal user. As discussed
in Section 3.3, the body of a procedure is a sequence of statements. The behavior of UserDefinedProc
is identical to UserDefinedFunc, except that it is the value of the last statement (as opposed to the
sole expression) that is returned.

4.10.4 JavaDefinedFunc

The class JavaDefinedFunc is used as a superclass for user-callable functions defined in Java. It
contains the following abstract function, which must be defined in all its subclasses:

abstract public Object call(Vector v, DBstate dbs)

Figure 4-15 shows the Java code defining JDFstrcat, a function to concatenate strings. Table 3.1 on
page 36 shows a list of all current subclasses of JavaDefinedFunc.

4.10.5 SQLfunc

The abstract class SQLfunc is used to represent relations that can be called explicitly through fetch
or implicitly through select. For example, the class SQLfuncLink represents the link relation. Note
that SQLfunc is not a subclass of UserCallableFunction and that its subclasses cannot be called like
regular functions. The key abstract function that must be overridden in any subclass is:

abstract public Boolean call(Bindings bindings, DBstate dbs, int compute_id)

61

public class SQLfuncRlink extends SQLfunc
{
public SQLfuncRlink(DBstate dbs) {
super ("rlink", dbs);
createAutomaticTable(dbs, "rlink",
"source_url_id url_id, *anchor varchar(255), *dest_url_id url_id");

3

public Boolean call(Bindings bindings,
DBstate dbs,
int compute_id) throws ex.ParasiteException {

String helper = (String)bindings.get("helper");
SearchEngine se = SearchEngine.getFunc (helper);
int num = ((Integer)bindings.get("num")).intValue(Q);
if (bindings.containsKey("anchor"))
return se.computePagesContainingAnchor(dbs, compute_id,
num, bindings.get ("anchor"));
else if (bindings.containsKey("dest_url_id"))
return se.computePagesReferencingDest(dbs, compute_id,
num, bindings.get("dest_url_id"));
throw new ex.ParasiteException("Unable to process this call to rlink");

Figure 4-16: Code for SQLfuncRlink

The procedure takes an item of class Bindings (Section 4.5.2) representing the known assignments,
the database state, and a compute_id (Section 4.3.3). It then adds rows as appropriate to the
eponymous relation or throws an exception if unable to do so.

Figure 4-16 shows the implementation of SQLfuncRlink. In the constructor SQLfuncRlink, the
automatic table (Section 3.5.2) rlink is created. Asterisks indicate defining columns 3.4 anchor
and dest_url_id. The procedure call determines the helper and num bindings and then checks
whether anchor or dest_url_id is bound, calling the corresponding function. If neither is bound, a
ParasiteException is thrown.

4.11 SearchEngine

The abstract class SearchEngine encapsulates search engines that can be called by the system. The
static method getFunc, used in Figure 4-16 maps from a string representing a search engine to the
object. Instance methods are shown in Figure 4-17.

4.11.1 AltaVista

The AltaVista class supports all of the SearchEngine methods. For computePagesContainingText
and computePagesContainingAnchor, value can be of type String or Junction. For computePages-
ReferencingDest, value can be an Integer, representing a url_id, or a Junction. Any other types
for value yield an exception.

62

abstract public Boolean computePagesContainingText(DBstate dbs, int compute_id,
int num, Object value)
Add to rcontents up to num pages reported to contain value, returning true on success,
false otherwise.
abstract public Boolean computePagesContainingAnchor(DBstate dbs, int compute_id,
int num, Object value)
Add to rlink up to num pages reported to contain a hyperlink
with anchor text value, returning true on success, false otherwise.
abstract public Boolean computePagesReferencingDest(DBstate dbs, int compute_id,
int num, Object value)
Add to rcontents up to num pages reported to contain a hyperlink
with destination value, returning true on success, false otherwise.

Figure 4-17: Methods Defined for SearchEngine

4.11.2 Lycos

The Lycos class supports computePagesContaining Text with value of type String or Junction. Calls
to the other functions yield an exception, because Lycos does not support those types of searches.

4.12 Computation

The class Computation supports the FETCH statement, whether it is entered by the user or produced
in interpreting a SELECT statement. For example, consider the following FETCH statement:

FETCH link(url_id=possible_id) FROM utable u WHERE u.score > 6;

These are the steps that take place in the public function performComputation:

1. If multiple namedArgument items are given, throw out all but the one whose name appear
earliest in the table definition, retaining helper and num assignments.

2. Use SimpleNode.findCells (Section 4.6.1) to determine what columns are needed from the SQL
server (e.g., utable.possible_id).

3. Request these columns (e.g., “SELECT u.possible_.id FROM utable u WHERE u.score>6"),
putting the results in SelectionResult sr.

4. For each row of sr

(a) Bind each cell name (e.g., u.possible_id) to the row’s corresponding value (e.g., 6).
(b) If a row does not yet exist in COMPUTATION representing this computation:

i. Call the appropriate function (link) with the appropriate bindings (url_id=6).
ii. Add the appropriate line to COMPUTATION

4.13 Selection

The Selection class contains the methods and data for interpreting SELECT statements according to
the algorithms described in Section 3.5.2. Each Selection instance consists of a Table, column name,
relational operator (i.e., “=" or “LIKE”), and value, plus a Vector of aliases of Tables that must
be bounded before the Selection can be determined. Consider the interpretation of the following
statement from the Home Page Finder:

63

SELECT DISTINCT u.url_id, 20, ’Base of file name same as name of directory: ’

+ v.vcvalue FROM urls u, parse pl, parse p2, valstring v
WHERE u.url_id IN (SELECT DISTINCT url_id FROM candidate)
AND pl.url_value_id = u.value_id AND p2.url_value_id = u.value_id
AND v.value_id = u.value_id AND pl.depth+1l = p2.depth

AND (pl.value = p2.value + ’.html’> OR pl.value = p2.value + ’.htm’);

Execution of performSelectStatement is as follows:
1. Local variable unboundedTables is set to the table aliases (e.g., {u, pl, p2, v})

2. If all tables are user-readable (section 3.5.1), send the statement to the SQL server and return.
(In this instance, (u (urls) and v (valstring) are user-readable; p! and p2 (parse) are not.)

3. If no WHERE clause is present, throw a ParasiteException with the message “In automatic
mode, select statements of canonical tables must contain a nontrivial where clause.”

4. Group together any conjunctions referring to the same column of the same alias. (In this
instance, there are none.)

5. Local variable numRemaining is set to unboundedTables.size() (e.g., 4)
6. While numRemaining > 0

(a) Call buildComputeClauses, which attempts to provide a bound on a member of unbound-
edTables. Procedure buildComputeClauses loops through passed variable unbounded Ta-
bles until it finds a table that is bound (i.e., has a defining column set to a known value),
as shown by the pseudo-code in figure 3-13. As a side-effect, it removes the bound element
from unboundedTables and creates Selection instances, placing them in selection Table.

(b) If no tables were bound (i.e., unboundedTables.size() = numRemaining, throw a Para-
siteException with the message: “Unable to provide bound on canonical tables: ” +
unboundedTables; otherwise, decrement numRemaining

In our example, the tables are bounded in this order:

(a) u, creating the following Selections:

i. {name = “u”, table = urls, lvalue = “u.url_id”, op = “LIKE”, rvalue = “(SELECT
DISTINCT url.id FROM candidate candidate0)”, dependences = { } }

_»

il. {name = “u”, table = urls, lvalue = “u.value_id”, op = “=", rvalue = “v.value_id”,
dependences = {v} }

(b) pl, creating the Selection {name = “pl”, table = parse”, lvalue = “pl.url_value_id”,
op = “=", rvalue = “u.value_id”, dependences = {u} }

(¢) p2, creating the Selection {name = “p2”, table = parse”, lvalue = “p2.url_value_id”,
op = “=", rvalue = “u.value_id”, dependences = {u} }

(d) v, creating the Selection {name = “v”, table = valstring”, lvalue = “v.value_id”, op =
“="_rvalue = “u.value_id”, dependences = {u} }

7. Determine the order in which the FETCH statement corresponding to each Selection must be
computed, honoring the dependences values. In our example, an acceptable order is {u, pl,
p2, v} because pl, p2, and v depend only on u.

8. For each Selection in selectionTable that is not a user-readable table, in order:

(a) Construct the FETCH statement corresponding to the Selection, appending “where (1=1)".
(b) Add constraints inherited from the dependences (shown in italics below).

(c) Interpret the FETCH statement. In our example, these would be:

64

i. “FETCH parse(url_value.id = u.value_id) FROM urls u, valstring v WHERE (1=1)
AND w.urlid IN (SELECT DISTINCT url_id FROM candidate candidate0) AND
u.value_id = v.value_id AND v.value_id = u.value_id’

ii. “FETCH parse(url-value_.id = u.value_id) FROM urls u, valstring v WHERE (1=1)
AND w.urlid IN (SELECT DISTINCT url_id FROM candidate candidate0) AND
u.value_id = v.value_id AND v.value_id = u.value_id’

9. Pass the original SELECT statement to the SQL server, which is now able to answer the query.

4.14 Utils

The class Utils contains many useful utility functions, for string processing, node manipulation, Web
access, and SQL server access. It also provides an assert method, which, if its first argument is false,
prints an error message and halts Squeal.

4.14.1 String Manipulation

A number of routines, shown in Figure 4-18, support general string manipulation and conversion
among different formats, e.g., Squeal, SQL, and URL formats. For example, percentage signs are
used in SQL queries to represent wild cards; unpercent removes them for Web queries. HTMLify
converts Strings into a format appropriate for appearing in a URL, such as by replacing every space
character (“”) with a plus sign (“+”). Similarly, to prepare a statement for the SQL server, special
characters are protected by doubleQuotes, which replaces each single quotation mark with a pair of
single quotation marks, and quotePercents, which puts brackets around each percentage sign The
method vectorToCommaSeparatedString. The method cleanText assures that Strings returned from
the SQL server are properly bounded.

4.14.2 SQL Server Access

Utils provides useful methods for accessing the SQL server, shown in Figure 4-19. The method
getSoleSelection is used to make a query that returns a single result, such as the vevalue associated
with a defined value_id. If zero or more than one results are returned, a ParasiteException is
thrown. (How this is handled is discussed in the next section.) The method getSoleSelectionNoFail
is similar but calls assert to ensure that one and only one result is returned. It is used for system
queries that should always return exactly one result, such as:

SELECT MAX(value_id) FROM valstring

The method tableExists checks whether a table exists on the SQL server. The five versions the
method dolnsert are used for inserting data in a variety of formats into a SQL table. The method
executeUpdate is used to send an already-constructed String to the SQL server.

4.14.3 Conversion

Utils contains many routines (Figure 4-20) to convert from one type of data to another; for example,
from the String “foo” to the associated value_id. Most conversions are implemented as simple
queries, which are passed to getSoleSelection, such as:

SELECT value_id FROM valstring WHERE vcvalue = "foo"

If the operation fails, the appropriate modification is made to the proper tables (e.g., adding a line
to valstring) and the query is re-attempted.

65

public static String stringSubstituteFirst(String origString, String origSub,
String newSub)
Replace the first instance of origSub with newSub in origString.
public static String stringSubstitute(String origString, String origSub,
String newSub, boolean globalP)
Replace every (if globalP is true) or the first (if globalP is false)
occurrence of origSub with newSub in origString.
public static String makeBound(String s, int limit)
Return a String containing the largest left substring of s such that its
length is less than limit.
public static String unquote(String s)
Remove quotation marks from the beginning and end of s if any are present.
public static String unpercent(String s)
Remove percentage signs from the beginning and end of s if any are present.
public static String HTMLify(String s)
Convert a String into a format appropriate for using as a URL, e.g., replacing “,” with
“0%2C7, etc.
public static String doubleQuotes(String s)
Make a legal SQL statement by replacing every single quote with a pair of single quotes.
public static String quotePercents(String value)
Replace percentage signs (%) in value with [%] in preparation for passing
a statement to the SQL server. This effectively quotes the percentage sign.
public static String cleanText(String s)
Remove any characters appearing after the null character in s.

Figure 4-18: String-Manipulation Methods Defined for Utils

public static Object getSoleSelection (String sqlString, DBstate dbs)
throws ex.ParasiteException
Pass the SQL statement sqlString to the SQL server and return the result.
If more than one result is returned by the SQL server, throw a ParasiteException.
public static Object getSoleSelectionNoFail (String sqlString, DBstate dbs)
Like getSoleSelection, but assert failure (halting the system) if more than
one value is returned.
public static boolean tableExists(String tableName, DBstate dbs)
Check whether a table named table Name exists on the SQL server.
public static void doImsert(...)
Create an INSERT statement assigning the specified columns to the specified values for the
indicated table and send the statement to the SQL server.
public static void executeUpdate(DBstate dbs, String q) throws ex.ParasiteException
Send the String ¢ to the SQL server.

Figure 4-19: SQL Server Access Methods Defined for Utils

66

public static int String to_value_id(DBstate dbs, String value) throws
ex.ParasiteException
Return the value_id of the line of valstring with value as the associated
text, creating the line if necessary.
public static String value_id_to_String(DBstate dbs, Integer value_id)
throws ex.ParasiteException
Return the text of the line of valstring that has value_id in the value_id field.
public static int urlstring to_url_id(DBstate dbs, String urlstring)
throws ex.ParasiteException
Return the url_id of the line of urls corresponding to the String uristring.
public static int URL_to_url_id(DBstate dbs, URL url, ...) throws
ex.ParasiteException
Return the url.id corresponding to url.
public static int URL_to_value_id(DBstate dbs, URL url, int compute_id)
throws ex.ParasiteException
Return the value_id associated with the string representation of wurl.
public static int value_id_to_url_id(DBstate dbs, int value_id, ...)
throws ex.ParasiteException
Return the url_id corresponding to the URL whose string representation has a value_id of
value_id.
public static URL url_id_to_URL(DBstate dbs, int url_id, ...) throws
ex.ParasiteException
Return the URL whose url_id is uri_id.
public static String url._id to_urlstring(DBstate dbs, int url_id, ...)
throws ex.ParasiteException
Return the string representation of the URL whose url_id is uri_id.
public static String URLtoContentString(URL url, DBstate dbs) throws
ex.ParasiteException
Return the String corresponding to the contents of the page addressed by wurl.

Figure 4-20: Conversion Methods Defined for Utils

67

public static Vector ProcessChildrenVector (SimpleNode node, SymbolTable symtab)
Return a Vector containing the results of interpreting every child of node.

public static Vector ProcessChildrenVectorSQL(SimpleNode node, SymbolTable symtab)
Return a Vector containing the results of executing toSQL on every child of node.

public static SimpleNode scoot(SimpleNode sn)
Return the earliest descendant of SimpleNode sn that has either zero
or multiple nodes (i.e., does not have only one child).

Figure 4-21: Methods Defined for Utils

4.14.4 Node Manipulation

Util contains a set of routines for operating on the SimpleNodes returned by the parser. The
method ProcessChildren Vector calls FrontEnd.processTree on all of the children of the passed node,
building up a Vector. This is used in interpreting FETCH statements and making Squeal func-
tion/procedure calls. The method ProcessChildrenVectorSQL is similar, except it evaluates nodes
with SimpleNode.toSQL. It is used for parsing INSERT statements. The method scoot walks down
the descendent tree from a node until it reaches a node with zero or more than one children, which
it returns. It is used to quickly traverse single strands in the parse tree. These methods are listed
in Figure 4-21.

68

