
Chapter 2

Ontology

A fundamental characteristic of the Web is the structural information it encodes, which has been
obscured through there being a number of different ways to represent different kinds of structure.
A key contribution of my work is providing a uniform interface to these different types of structure.
This is done through the Squeal ontology, represented by a SQL database schema, which serves as
the user’s view of the Web, allowing the user to focus on structural information without needing to
be aware of the representation.

2.1 Types of Information on the Web

The World-Wide Web consists of pages of data, addressed by uniform resource locators (URLs). We
focus on pages written in hypertext markup language (HTML). HTML includes tags and attributes
to specify intra-document information, such as a page’s logical structure or how it should be visually
rendered. HTML also incorporates inter-document information, such as what pages are connected
by hyperlinks. In this section, I discuss what type of information about Web pages can be accessed
through Squeal.

2.1.1 Uniform Resource Locators (URLs)

A URL consists of the following components:

• An access scheme, such as “http”, which stands for “hypertext transfer protocol”, followed by
a colon (:).

• A machine name, preceded by two forward slashes (//).

• Optionally, a machine port number, preceded by a colon (:). The default port number is 80.

• A Unix-style (case-sensitive, slash-delimited) path name, including the file name.

• Optionally, a label preceded by a pound sign (#), specifying a reference within a document.

We concern ourself with the documents accessible via http. Some examples of URLs are:

• http://www.ai.mit.edu:80

• http://www.ai.mit.edu/projects/cs101/#course

• http://www.amazon.com/exec/obidos/ats-query/4304-6019362-659411

18



<H1>Massachusetts Institute of Technology</H1>

<H2>Spotlights</H2>

<UL>
<LI> Felice Frankel: The Power of Images
<LI> An Evening of Conversation with Noam Chomsky and Kathleen Cleaver
</UL>

Figure 2-1: HTML Specification of Internal Document Structure. The corresponding display is
shown in Figure 2-2

Massachusetts Institute of Technology

Spotlights

• Felice Frankel: The Power of Images

• An Evening of Conversation with Noam Chomsky and Kathleen Cleaver

Figure 2-2: Appearance of HTML Internal Document Structure (Figure 2-1).

2.1.2 Hypertext Markup Language

All documents, except for some leaf nodes, are written in hypertext markup language (HTML) [32],
which consists of ordinary text augmented with tags and attributes. Tag names are followed by
zero or more attribute assignments, all enclosed in angle brackets. In some cases, subsequent text is
affected until the appearance of a concluding tag, prefixed with a forward slash (/). This enclosed
text is referred to as anchor text. For example, this piece of hypertext:

<FONT face="Times" color=red>fire</font>

contains the tag “FONT”, which indicates that the anchor text (“fire”) should appear in the font
specified by the attributes, i.e., in the face “Times” and the color red. HTML is used to express
information about a document’s internal structure, appearance, hyperlinks, and meta-information.
We will discuss these in the following separate sections, although a single tag can serve more than
one of these purposes.

Internal structure

An HTML document can contain internal structure in the form of headers and lists. The tag “H1”
is used to designate a top-level header, “H2” a second-level header, and so forth through “H6”, a
sixth-level header. Four tags are used to designate different types of simple lists: “OL” (ordered list),
“UL” (unordered list), “MENU”, and “DIR” (directory list). The “LI” (list item) tag appears before
each item. Figure 2-1 shows some hypertext specifying header and list information. Figure 2-2 how
it might be displayed to a user.

Appearance

Tags are used to express the font family (e.g., Times), style (e.g., italics), size, and alignment of
text on a page. They are also used to include graphics, white space, and lines. Authors frequently

19



misuse header tags for their effects on display, even though the commands are meant for structural
information.

Hyperlinks

Tags are used to designate hyperlinks from the current page to another location on the Web, typically
another page. A link is designated with the “A” (“anchor”) tag, and the “HREF” attribute is used
to express the destination. When displayed by a browser, clicking on the anchor text causes the
destination to be loaded.

Meta-information

The “META” tag is used to express meta-information meant for Web tools rather than for browsers.
The “NAME” and “CONTENT” attributes are used to specify the type of information being given
and its value, respectively. Common values of the “NAME” attribute are “description” and “key-
words”, both used by search engines to categorize, rank, and display URLs. While broader standards
for metadata, such as the Dublin Metadata Core Element Set [44], have been proposed, none are in
wide use.

2.2 Database Relations

Rather than invent a new language to represent structural information, we turn to a representation
designed for this purpose: relational databases. This section presents the relational database schema
through which the Squeal user views the Web. Once in this representation, Structured Query
Language (SQL)can be used to access it.

The Squeal relations are divided into four categories: (1) basic relations, (2) tag and attribute
relations, (3) relations built on tags, and (4) relations for second-hand information. Relation and
column names appear in bold face and function names appear in slant font. After a relation is
defined, its use is demonstrated through an annotated transcript, in which user commands are shown
in boldface and annotations in italics. To keep the query results readable, I sometimes do not show
all of the results returned by the system.

2.2.1 Basic Relations

In order to provide useful information about the Web, it is necessary that strings, URLs, and Web
pages can be represented. This is done through the four basic relations:

1. valstring, which maps an integer to a string

2. urls, which describes the set of URLs representing the same page

3. parse, which represents the components of a URL

4. page, which represents information corresponding to a single page

valstring

The valstring relation, shown in Table 2.1 is used to map an integer value id to a string. The
value ids are frequently used in other relations to represent strings. The primary purpose of this
indirection it to represent strings as cleanly and efficiently as possible. The vcvalue field is used
for strings of less than 256 characters, the maximum length of a varchar (variable-length character
array) object supported by Microsoft SQL Server. The unlimited textvalue field is only used when
needed for larger strings, because it requires at least 2048 bytes of storage. For every legal row in the
relation, one of vcvalue or textvalue is null.1 The SQL definition for this and the other relations
is shown in appendix A.

1Because of limitations on operations involving TEXT fields, Microsoft SQL Server cannot enforce this constraint.

20



valstring
colname type notes
value id INT
vcvalue VARCHAR(255)
textvalue TEXT

Table 2.1: The valstring Relation. Note that this is the SQL data structure representing the table,
indicated by the double border.

The value id function returns the value id associated with a string, adding a new row to the
relation if necessary. The value function converts a value id into a string.

CREATE PROCEDURE value @id INT
AS
SELECT COALESCE(CONVERT(TEXT,vcvalue),textvalue)
FROM valstring
WHERE value id = @id

urls

The urls relation, shown in Table 2.2 is used to map one or more value ids representing URL strings
to a unique url id. If there were a one-to-one correspondence between URL strings and url ids,
it would not be needed, but multiple URL strings can reference the same page. For example, both
“http://www.ai.mit.edu” and “http://www.ai.mit.edu/index.html” reference the same document,
so they would have the same url id, with different variant numbers.

The url id function returns the url id associated with a URL string, adding a new row to urls
and value id if necessary. The url function converts a url id into a URL string. This can be defined
in SQL:

CREATE PROCEDURE url @id INT
AS
SELECT COALESCE(CONVERT(TEXT,v.vcvalue),v.textvalue)
FROM valstring v, urls u
WHERE v.value id = u.url id AND u.url id = @id

The url id associated with a string can change because a url id is initially assigned when the
URL is encountered, although it cannot be determined whether two URLs correspond to the same
page until their contents have been retrieved. It is impractical to retrieve entire pages when a url id
is defined, so the only other option is to allow a url id to change. For this reason, the user should
call the url id function when a url id is needed, rather than storing the result of calling url id. If
the user creates a table with a column of type url id, the value in the table will change if the url id
changes.

Strictly speaking, there is no way to tell if two URLs reference the same file or merely two copies
of a file. Squeal uses the heuristic that two URLs reference the same page and should have the same
url id if they retrieve identical contents and the host component of the URLs are the same strings
(ignoring case differences). Corresponding pages at separate mirror sites would not have the same
url id.

parse

The parse relation, shown in Table 2.3 encodes a parsed version of a URL string. This is use-
ful for determining if two URLs are on the same host machine or if one is above the other in

21



urls
colname type notes
url id INT
value id INT unique
variant INT default: 0

Table 2.2: The urls relation

parse
colname type notes
url value id INT
component CHAR(5) {“host”, “port”, “path”, “ref”}
value VARCHAR(255)
depth INT null when component 6= “path”

Table 2.3: The parse relation

the directory hierarchy. The component field contains “host”, “port”, “path”, or “ref”, and the
value field shows the associated value. For the “path” component, the depth within the file hi-
erarchy is also indicated, starting at the file name. Table 2.4 shows the parse relation for the
URL “http://www.ai.mit.edu/people/index.html”. Note that one url id can have multiple parses
if multiple URLs correspond to that page.

page

The page relation, shown in Table 2.5 caches pages so they are not unnecessarily retrieved from the
Web. It contains information from the last time a page was retrieved, including the text of a page,
its size, a time stamp and the results of a Message Digest 5 (MD5) hash function [34] on the page’s
text, providing a quick way to tell if two pages contain the same text. The valid field encodes the
results of the last attempted retrieval of the page: “y” if it was successfully retrieved, “n” if it could
not be retrieved, or “b” if the page was over the maximum page size limit (to be discussed in the
next chapter).

Figure 2-3 includes a transcript demonstrating these relations.

2.2.2 Tag and attribute relations

Because they encode the structure of pages and hyperlinks, tags and attributes are fundamental to
Squeal, allowing users to access this information.

url value id component value depth
950 host www.ai.mit.edu 0
950 port 80 0
950 path index.html 1
950 path people 2
950 ref [null] 0

Table 2.4: Parse relation for url value id = value id(‘http://www.ai.mit.edu/people/index.html’)

22



What value id corresponds to the string “http://www.ai.mit.edu/index.html”?
SELECT value id
FROM valstring
WHERE vcvalue=‘http://www.ai.mit.edu/index.html’;
value id
2606

What url id corresponds to the url represented by “http://www.ai.mit.edu/index.html”?
SELECT url id
FROM urls
WHERE value id = 2606;
url id
817

The url id operator is a shortcut for the above sequence:
print url id(‘http://www.ai.mit.edu/index.html’);
817

Show all the known URLs corresponding to this url id.
SELECT *
FROM urls
WHERE url id = 817;
url id value id variant
817 2606 1
817 11128 2

Show all the known URLs for this page.
SELECT v.vcvalue
FROM valstring v, urls u
WHERE u.url id = 817 AND v.value id = u.value id;
vcvalue
http://www.ai.mit.edu
http://www.ai.mit.edu/index.html

How many bytes long is this page?
SELECT bytes FROM page WHERE url id = 817;
bytes
5618

What is the host component of the URL?
SELECT value
FROM parse
WHERE component=‘host’ AND url value id = 817;
value
www.ai.mit.edu

Figure 2-3: Transcript Illustrating the Basic Relations

23



page
colname type notes
url id INT
contents TEXT
bytes INT
md5 CHAR(32)
when DATETIME

Table 2.5: The page relation

tag
colname type notes
url id INT
tag id INT unique
name CHAR(15)
startOffset INT
endOffset INT

Table 2.6: The tag relation

tag

The tag relation, shown in Table 2.6, contains one line for each tag or set of paired tags encountered.
(Single tags include “<hr>” (horizontal rule); paired tags include “<title>” ... “</title>”.) Infor-
mation stored includes the url id, tag name, start and end character offsets within the document,
and a unique tag id, which is used to reference attributes.

att

The att relation, shown in Table 2.7, contains one line for each attribute name and value in a
document. The name is a short string and the value an index into valstring. I treat the anchor
text enclosed by a pair of tags to be the value of the attribute “anchor”.

Figure 2-4 has a transcript demonstrating the use of the tag and attribute relations.

2.2.3 Relations built on tags

Information about the structure of headers and lists on a page and hyperlinks across pages can be
inferred from the information in the tag and att tables, but we provide the user with specialized
tables header, list, and link for greater convenience.

att
colname type notes
tag id INT
name CHAR(15)
value id INT

Table 2.7: The att relation

24



How many times does each type of tag appear on “http://www.mit.edu”?
SELECT name, COUNT(*)
FROM tag
WHERE url id = url id(‘www.mit.edu’)
GROUP BY name;
name
!DOCTYPE 1
A 42
BODY 1
FNORD 15
HEAD 1
HTML 1
IMG 10
P 16
TITLE 1

What tags appear within the first hundred characters?
SELECT name, tag id
FROM tag
WHERE url id = url id(‘www.mit.edu’) AND startOffset < 100;
name tag id
!DOCTYPE 1087
HTML 1088
HEAD 1089
TITLE 1090

Show me the attributes of the “title” tag.
SELECT *
FROM att
WHERE tag id = 1090;
tag id name value id
1090 anchor 1105

What is the text associated with the “title” tag?
SELECT vcvalue
FROM valstring
WHERE value id = 1105;
vcvalue
SIPB WWW Server Home Page

What are the attributes associated with “img” (image) tags in the first 2000 characters?
SELECT a.name, v.vcvalue, t.tag id
FROM valstring v, tag t, att a
WHERE t.url id = url id(‘www.mit.edu’)

AND t.startOffset < 2000 AND t.name=‘img’
AND a.tag id = t.tag id AND v.value id = a.value id

name vcvalue tag id
alt MIT SIPB WWW Server 1098
src http://www.mit.edu/gif/MITSIPB cropped.GIF 1098
align bottom 1126
src http://www.mit.edu/gif/Icon NEW.GIF 1126

Figure 2-4: Transcript Demonstrating the tag and att Relations

25



header
colname type notes
url id INT
struct BINARY(6)
ord INT
offset INT

Table 2.8: The header relation

list
colname type notes
url id INT
struct BINARY(6)
ord INT
offset INT

Table 2.9: The list relation

header

As discussed above, HTML supports six levels of headings (H1–H6). Through the header table,
shown in Table 2.8, Squeal keeps track of the levels of headings at each point of change. The struct
column consists of an array of six bytes, each of which corresponds to one level of heading. At the
beginning of a page, all six bytes are initialized to zero. Whenever a <Hn > tag is encountered,
byte (n − 1) is incremented, and all bytes with higher offsets are zeroed. This can be seen in the
above transcript. The ord element is an ordinal number incremented with every new database line.
The following transcript provides an example:

Show the header structure of “www.ai.mit.edu/people/ellens/cv.html”
SELECT h.struct, t.name, h.offset
FROM header h, tag t
WHERE h.url id=437 AND t.url id = 437

AND h.offset = t.startOffset;
struct name offset

1 0 0 0 0 0 H1 129
1 1 0 0 0 0 H2 586
1 2 0 0 0 0 H2 1820
1 3 0 0 0 0 H2 3246
1 4 0 0 0 0 H2 4691
1 5 0 0 0 0 H2 5591
1 6 0 0 0 0 H2 6518
1 6 1 0 0 0 H3 6680
1 6 2 0 0 0 H3 10618
1 7 0 0 0 0 H2 13645
1 8 0 0 0 0 H2 16948

list

As discussed above, There are four types of lists supported by HTML: ordered lists, unordered
lists, menus, and directories. In the list relation, they are not differentiated among. Lists can be
arbitrarily nested in HTML; Squeal keeps track of up to six levels of nesting of lists, via the list

26



• Initialization

1. Set each of the 6 bytes of struct to 0.

2. Set each of the 6 bytes of internal structure lmax to 0.

• When a new list begins

1. If all elements of struct are 0, set i to 0. Otherwise, set i to the highest index such that
struct[i] 6= 0.

2. lmax[i]← lmax[i] + 1

3. struct[i]← lmax[i]

4. ∀j | i < j < 6, lmax[j]← 0

• When a list ends

1. Set i to the highest index such that struct[i] 6= 0.

2. struct[i]← 0

Figure 2-5: Rules for Managing List Structure

link
colname type notes
source url id INT
anchor value id INT
dest url id INT
hstruct BINARY(6)
lstruct BINARY(6)

Table 2.10: The link relation

relation, shown in Table 2.9. The struct column contains an array of six bytes. The rules for
managing the bytes are shown in Figure 2-5, and an example is shown in Figure 2-6.

link

The link relation, shown in Table 2.10, contains one line for each hyperlink encountered, storing
the source url id, anchor text value id, destination url id, and the list structure and header
structure at which the hyperlink occurs. Because all of the information in the link table exists in
other tables, it can be defined as a SQL view (virtual table), as shown in Figure 2-7 (although for
practical reasons, it is implemented as an ordinary table).
Figure 2-8 contains a transcript demonstrating the link relation.

2.2.4 Relations for second-hand information

In addition to direct information about the text and hyperlinks of Web pages, indirect information
can be obtained from Web tools. It is important however to distinguish between verified and second-
hand information, hence the rcontains table, for reported contents of pages, and the rlink table,
for reported links .

27



0 1 2 3 4 5
- - - - - -
0 0 0 0 0 0 [start of document]
1 0 0 0 0 0 List1 begins
1 1 0 0 0 0 Sublist 1a begins
1 0 0 0 0 0 Sublist 1a ends
0 0 0 0 0 0 List 1 ends
2 0 0 0 0 0 List 2 begins
2 1 0 0 0 0 Sublist 2a begins
2 0 0 0 0 0 Sublist 2a ends
2 2 0 0 0 0 Sublist 2b begins
2 0 0 0 0 0 Sublist 2b ends
0 0 0 0 0 0 List 2 ends

Figure 2-6: Example of struct values of list at list tags

CREATE VIEW link
AS
SELECT DISTINCT t.url id AS source url id,

aAnchor.value id AS anchor value id,
u.url id AS dest url id,
h1.struct AS hstruct,
l1.struct AS lstruct

FROM tag t, att aAnchor, att aHref, urls u,
header h1, header h2, list l1, list l2

WHERE t.name = ‘a’ AND t.tag id = aAnchor.tag id AND
aAnchor.name = ‘anchor’ AND t.tag id = aHref.tag id AND
aHref.name = ‘href’ AND u.value id = aHref.value id AND
h1.url id = t.url id AND h2.url id = t.url id AND
h1.offset < t.startOffset AND h2.offset > t.startOffset AND
h1.ord+1 = h2.ord AND l1.url id = t.url id AND
l2.url id = t.url id AND l1.offset < t.startOffset AND
l2.offset > t.startOffset AND l1.ord+1 = l2.ord

Figure 2-7: A SQL definition of link in terms of other relations

28



Show the value id and anchor text of all links from “www.ai.mit.edu/projects/haystack/”
SELECT l.anchor value id, v.vcvalue
FROM link l, valstring v
WHERE l.source url id = 503 AND l.anchor value id = v.value id;
anchor value id vcvalue
115 Publications
120 People
1686 Introduction
1687 Download
1688 Installation
1689 Online Manual

Give me the url id and URL of some pages that point to “www.ai.mit.edu”
SELECT l.dest url id AS url id, v.vcvalue AS value
FROM link l, valstring v, urls u
WHERE l.dest url id = 1 AND u.url id = l.source url id
AND v.value id = u.value id;
url id value
3 http://www.tns.lcs.mit.edu/
4 http://www-mtl.mit.edu/
5 http://www.csg.lcs.mit.edu:8001/
6 http://farnsworth.mit.edu/other servers.html
7 http://www.frob.com/
9 http://cag-www.lcs.mit.edu/

See what other links from “www.tns.lcs.mit.edu” are in the same list as the link to
“www.ai.mit.edu”

SELECT DISTINCT l.dest url id, v.vcvalue
FROM link l, link lAI, valstring v, urls u
WHERE l.source url id = 3 AND lAI.source url id = 3
AND lAI.dest url id = 1 AND l.lstruct = lAI.lstruct
AND l.dest url id = u.url id AND v.value id = u.value id;
dest url id vcvalue
1 http://www.ai.mit.edu/
2 http://www.lcs.mit.edu/
34 http://web.mit.edu/
78 http://farnsworth.mit.edu/
79 http://www.mit.edu/

Figure 2-8: Transcript Demonstrating the link Relation

29



rcontains
colname type notes
url id INT
value VARCHAR(255)
helper CHAR(16)

Table 2.11: The rcontains relation

rlink
colname type notes
source url id INT
anchor VARCHAR(255)
dest url id INT
helper CHAR(16)

Table 2.12: The rlink relation

rcontains

The rcontains relation, shown in Table 2.11, indicates the claim by the search engine specified in the
helper column that a certain page contains a certain piece of text. In the current implementation,
legal values for the helper column are “altavista” and “lycos”. (Details on how many such pages
the rcontains table holds will be discussed in Section 3.6.) The SQL definition of rcontains is:

rlink

The rlink relation, shown in Table 2.12, contains search engine claims about hyperlinks among
pages. Because of how the underlying search engine (AltaVista) works, the source url id field will
always have a non-null value, as will the helper field, but exactly one of anchor and dest url id
will be null. In other words, a line can indicate the reported source and destination of a hyperlink,
or it can indicate a page and anchor text that reportedly appears in a hyperlink. The missing
information, assuming the reported link actually exists, can be extracted from the link relation.
The transcript in Figure 2-9 demonstrates the use of the rlink and rcontains relations.

2.3 Summary

We have shown the Squeal ontology, i.e., what information on the Web is available to the Squeal user
and the abstraction through which it is accessed. Specifically, the user has access to the raw and
parsed version of each URL (urls, parse), the raw text, size, and hash value of each page (page),
including all of the tag and attribute (att) values. This information can be accessed directly or
through the header, list, and link relations. The user can also ask what pages reportedly contain a
specified piece of text (rcontains) or a described hyperlink (rlink). In the next chapter, we provide
more detail on the syntax of user queries and how Squeal provides the information.

30



Find pages that reportedly contain “MIT AI Lab”.
SELECT r.url id, v.vcvalue
FROM rcontains r, valstring v, urls u
WHERE r.value LIKE ‘%MIT AI Lab%’

AND u.url id = r.url id AND v.value id = u.value id;
url id vcvalue
829 http://www.ai.mit.edu/weather/weather.html
830 http://www.mic.atr.co.jp/ hajiri/html/AI.html
828 http://www.neurop2.ruhr-uni-bochum.de/MIT lit.html
837 http://ymiseja.eenet.ee/IT/maillist/msg9.html
838 http://www.pmms.cam.ac.uk/ gjm11/jargon/jargappA.html
839 http://www.csa.runnet.ru/AI/faqs/lisp 6.htm

Find pages that reportedly point to “www.ai.mit.edu/people/ellens/gender.html”.
SELECT r.source url id, v.vcvalue
FROM rlink r, valstring v, urls u
WHERE r.dest url id = 591 AND u.url id = r.source url id
AND v.value id = u.value id;
source url id vcvalue
542 http://www.cs.vassar.edu/
846 http://www.mcs.salford.ac.uk/TOUR/022.htm
847 http://www.cmu.edu/adm/uri/oncampus/opps.html
851 http://yaron.clever.net/sheizaf3.shtml

Find pages that reportedly contain “computer science” as anchor text.
SELECT r.source url id, v.vcvalue
FROM rlink r, valstring v, urls u
WHERE r.anchor = ‘computer science’
AND u.url id = r.source url id and v.value id = u.value id;
source url id vcvalue
868 http://longwood.cs.ucf.edu/
869 http://emmy.smith.edu/
870 http://www.icsi.berkeley.edu/
871 http://www.engr.uvic.ca/

Figure 2-9: Transcript Demonstrating the rlink and rcontains Relations

31


