
Chapter 3

Squeal

The previous chapter described a relational database model of the Web. This abstraction is imple-
mented by the Squeal interpreter, which determines what information from the Web needs to be
brought into the database and how to do so. This chapter describes the Squeal language and the
algorithms that support its interpretation. The next chapter goes into lower-level detail about the
Java implementation of the Squeal interpreter.

The Squeal core is syntactically a subset of SQL, with a different semantics. For example,
consider the possible interpretations of the following statement:

SELECT dest_url_id FROM link WHERE source_url_id = 7

The semantics of the statement in SQL are to query the link table and return to the user all values
of dest url id whose associated source url id is seven. No changes are made to the database by
the statement’s execution. In contrast, the semantics in Squeal are to return the url ids of all links
from the Web page represented by source url id. As a side effect, the link table in the database
representation may be modified, but users need not be aware of this. The purpose of Squeal is to
give users the illusion that they are directly querying the Web.

When a statement is entered, the Squeal interpreter parses it, rejecting it with an error message
if it is invalid and generating a parse tree otherwise. If the statement doesn’t reference any of the
special tables described in Chapter 2, it is passed through to the SQL server and the reply is passed
back to the user. If special tables are referenced, the Squeal interpreter determines what information
from the Web is needed in order to answer the query. If the information is not yet in the database,
it fetches and parses Web pages and puts the needed information into the database. The rest of
this chapter gives the syntax and semantics of Squeal and the algorithms for its interpretation.
In addition to the core, which only includes legal SQL statements, Squeal contains some simple
mechanisms for naming and abstraction, also described in this chapter.

3.1 Lexical Tokens

Figure 3-1 shows the lexical tokens used in the Squeal grammar. Strings may be delimited with
either single or double quotation marks. Identifiers may start with optional “#” characters (for
SQL temporary tables), then must have a letter, and then may be followed by any combination
of letters, digits, and underscores. The language is case-insensitive. Statements are separated by
semicolons, not shown in the below grammars. Comments are begun with a double slash (“//”) and
extend to the end of a line.

3.2 Expressions

The grammar for expressions is shown in Figure 3-2. The semantics of expression evaluation depend
on whether an object is a first-class or passed-through data type. The complete Squeal grammar

32

<STRING>: ("’" (~["’"])* "’") | ("\"" (~["\""])* "\"")

<LETTER>: ["A"-"Z", "a"-"z"]

<DIGIT>: ["0"-"9"]

<IDENTIFIER>: ("#")* (<LETTER>)+ (<LETTER>|<DIGIT>|"_")*

<NUMBER>: (<DIGIT>)+

Figure 3-1: Lexical tokens

appears in appendix B. In this chapter, we simplify it slightly for expository purposes.

3.2.1 First-class data types

Integers and strings are first-class objects. The binary operations “+”, “-”, “*”, and “/” are defined
for integers, as is unary minus. Strings may be bounded with single or double quotation marks.

3.2.2 Passed-through data types

Squeal also recognizes table types, aliases, column names, relational operators, and logical expres-
sions but does not evaluate them, instead passing them to the SQL server for interpretation, typically
as part of the WHERE clause of a SELECT statement.

3.2.3 Special data types

While the representation of the url id and value id types are integers, they are treated as special
for two reasons:

1. It is convenient for the interpreter to know they are not ordinary integers, so the corresponding
string can be displayed to the user.

2. The url id associated with a specific URL (specifically, associated with a specific value id)
can change, as discussed in Section 2.2.1.

If the user defines a column to be of type url id, the interpreter knows to change the values if the
url id changes.

3.3 Simple Statements

Figure 3-3 shows the grammar for SQL statements. In this section, we will discuss the statements
that do not access the Web or the database.

3.3.1 Basic statements

The grammar for the print and let statements is shown in Figure 3-4. The print statement, which
can be abbreviated “?”, prints an expression. For example, “print 2*3” prints 6. The let statement
sets a variable to an expression value. If the variable has not been defined, it is created. Any variable
can hold either a string or an integer. The expression in the optional “ELSE” clause is evaluated if
the first expression is null. This is similar to the “COALESCE” statement in SQL.

33

expression: disjunctionExpression

disjunctionExpression: conjunctionExpression ("OR" disjunctionExpression)?

conjunctionExpression: negationExpression ("AND" conjunctionExpression)?

negationExpression: ("NOT")? relExpression

relExpression: sumExpression (rel opsumExpression)?

rel op: "<" | "=" | ">" | "<>" | ">=" | "<="
| "NOT IN" | "LIKE" | "NOT LIKE" | "IN"

sumExpression: productExpression (("+")|("-") sumExpression)?

productExpression: unaryExpression (("*")|("/") productExpression)?

unaryExpression: ("-")? parenthesizedExpression

parenthesizedExpression: "(" selectStatement ")"
| "(" expression ")"
| funcall
| cell
| <NUMBER> | <IDENTIFIER> | <STRING>
| aggregateExpression
| "*"

cell: <IDENTIFIER> "." (<IDENTIFIER> | "*")

aggregateExpression: aggregate op "(" agg restrict? expression ")"

aggregate op: "AVG" | "MAX" | "MIN" | "SUM" | "COUNT"

agg restrict: "ALL" | "DISTINCT" | "UNIQUE"

Figure 3-2: Grammar for Expressions. . The symbol “|” represents disjunction. When an item is
followed by “?”, it is optional; when followed by “*”, it may appear any number of times, including
zero. The nonterminal funcall is defined below in Figure 3-5.

34

statement: printStatement
| letStatement
| callStatement
| helpStatement
| deffuncStatement
| defprocStatement
| inputStatement
| outputStatement
| quitStatement
| fetchStatement
| selectStatement
| createStatement
| dropStatement
| deleteStatement
| updateStatement
| insertStatement
| describeStatement

Figure 3-3: Grammar for statement

letStatement = "LET" <IDENTIFIER> "=" expression ("ELSE" expression)

Figure 3-4: Grammar for let Statements. The variable is defined to be the value of the first
expression, unless it is null and an else clause is present, in which case the second expression is
used.

35

callStatement: funcall

funcall: <IDENTIFIER> argList

argList: "(" (expression ("," expression)*)? ")"

deffuncStatement: "DEFFUNC" <IDENTIFIER> symbolList expression

defprocStatement: "DEFPROC" <IDENTIFIER> symbolList (statement)+ "ENDPROC"

symbolList: "(" (<IDENTIFIER> ("," <IDENTIFIER>)*)? ")"

helpStatement: "HELP" "(" <IDENTIFIER> ")"
| "HELP" <IDENTIFIER>

Figure 3-5: Grammar for deffunc, defproc, call, and help

function description
strcat Concatenate any number of strings
directory Return a URL with the file name removed
dirparent Return the parent of the given directory
value id Return the value id associated with a string.

If no string is provided, return a number one higher than the
highest value id

value Return the string associated with a value id
url id Return the url id associated with a string or value id
url Return the url associated with a url id

Table 3.1: User-Callable Functions Defined at Squeal Start-Up

3.3.2 Function/procedure statements

Squeal supports built-in and user-defined functions and procedures. The body of a function is an
expression, and the body of a procedure is one or more statements. The deffunc and defproc
statements are used to declare functions and procedures, respectively, and they are called with the
call statement. The help statement prints information about a built-in function. The grammar
for these statements appear in Figure 3-5. Figure 3-6 shows a transcript demonstrating their use.
Table 3.1 shows a list of functions defined when the system begins.

3.3.3 Control statements

The grammar for the control statements is shown in Figure 3-7. The input statement specifies from
where the Squeal interpreter should receive its input. If the expression is a file name, commands will
be read from that file. If the expression is a number, commands will be read from the associated
port. The output statement indicates that ordinary output should be written to the associated
file.

The quit statement closes the current input stream to the interpreter, ending the effect of the
last input statement. If quit is entered at the top input level, the interpreter is exited.

36

help strcat;
Concatenate any number of strings

? strcat("foo", "bar");
foobar
[printed]

deffunc double(x) strcat(x,x);
[defined function ’double’]

? double(’hello’);
hellohello
[printed]

defproc sumdiff(a, b)
? a + b;
? a - b;

endproc;
[defined procedure ’sumdiff’]

sumdiff(10,2);
12
8
[printed]

Figure 3-6: Transcript Demonstrating Squeal Functions and Procedures. Commands are in bold
face. All other text, including that in brackets, is generated by the Squeal interpreter.

inputStatement: "INPUT" expression

outputStatement: "OUTPUT" stringLiteral

quitStatement: "QUIT" | "EXIT"

Figure 3-7: Grammar for input, output, and quit statements

37

table defining columns optional columns
link source url id, anchor value, dest url id
page url id
parse url value id
rcontains value helper, num
rlink anchor value, dest url id helper, num
tag url id

Table 3.2: Defining Columns for Tables

User query:
select * FROM link WHERE source url id = 1

Normalized form:
select L.* FROM link L WHERE L.source url id = 1

Squeal interpretation:
fetch link(source url id = 1)
mselect * FROM link WHERE source url id = 1

Figure 3-8: Transformation of Squeal User Query into Internal Statements

3.4 Internal Statements: fetch and mselect

In addition to the Squeal user commands, there are two internal commands that are useful to the
Squeal interpreter: fetch and mselect. fetch does whatever is necessary to fill in lines of a table,
given a defining column and a value, which can be used to define entire lines of the relation. For
example, source url id is a defining column of link because, given a source url id, all of the values
of associated lines can be computed. Table 3.2 shows the defining columns of each of the applicable
tables, as well as columns that may optionally be defined in the case of the rcontains and rlink
relations. The helper field specifies which search engine should be consulted, and num indicates
the number of matching pages that should be retrieved. By default, this value is 10. mselect,
standing for “manual select”, simply passes a SELECT statement to the underlying SQL server. As
the example in Figure 3-8 shows, SELECT statements are normalized and then broken down into a
combination of fetch and mselect statements. This process is discussed in Section 3.5.1.

The fetch statement

While the Squeal interpreter can be configured to allow the user to enter fetch and mselect
statements, they are meant for internal Squeal use. The grammar of the fetch statement is shown
in Figure 3-9. We will consider three separate classes of fetch statements. During this discussion,
it is important to distinguish between table types, such as link, and table aliases, such as L, as
illustrated in Figure 3-8. If a query involves only one table alias, the user may omit it, in which case
an alias is inserted during Squeal’s query normalization process.

Basic fetch statement The simplest type of fetch statement does not include a “FROM”
clause. How it is interpreted depends on what relation and columns are specified. Figure 3-10 shows
how they are interpreted. If multiple columns are supplied, only the earliest one in the relation
definition is used. For example,

fetch link(source url id=1, dest url=2)

is treated as:

38

fetchStatement = "FETCH" <IDENTIFIER> "(" fetchList ")"
("FROM" tableList
("WHERE" logicExpression)?
("GROUP BY" columnList)?
("HAVING" logicExpression?)?

fetchList = namedArgument ("," namedArgument)*

namedArgument = <IDENTIFIER> "=" fetchExpression

fetchExpression = expression "|"expression
| expression "&" expression
| expression

Figure 3-9: Grammar for fetch Statement. Nonterminals columnList and orderList are defined
in Figure 3-11. Nonterminals logicExpression and expression are defined in Appendix B.

table column
link anchor value
link dest url id
rcontains value
rlink anchor value
rlink dest url id

Table 3.3: Relations Allowing fetch Conjunctions or Disjunctions

fetch link(source url id=1)

fetch statement with Conjunction or Disjunction In addition to providing a single expres-
sion for a column, it is possible to provide a conjunction or disjunction. For example, consider the
following statement:

fetch rcontains(value=’Golden’&’Spertus’)

This asks Alta Vista for all pages that contain both of the words “Golden” and “Spertus” (of which
there are 20). Similarly, consider the following statement:

fetch rcontains(value=’Golden’|’Spertus’)

This finds pages that Alta Vista claims contain either “Golden” or “Spertus” (of which there are
about 3000). Table 3.3 shows the columns that can be set to conjunctions or disjunctions.

fetch statement with FROM clause To use the contents of a table column as part of the
expression, one can supply a FROM clause to a fetch statement. For example, consider the
following fetch statement, which references user-defined table “utable”:

fetch link(source url id = url id) FROM utable WHERE url id > 10

This is interpreted as:

For all values u of url id in table utable such that u > 10,
fetch link(source url id = u).

39

table

• source url id: fetch the page and parse links

• anchor value: perform fetch rlink(anchor value=<anchor value>)), then verify links

• dest url id: perform fetch rlink(dest url id=<dest url id>), then verify links

page

• url id: fetch page from the Web

parse

• url value id: parse associated string

rcontains

• value: ask search engine for pages containing <value>

rlink

• anchor value: ask search engine for pages with the associated string as anchor text

• dest url id: ask search engine for pages pointing to <dest url id>

tag

• url id: fetch page from Web or page table and parse

Figure 3-10: Interpretation of Simple fetch Statements. When a search engine is used, it is by
default Alta Vista with 10 responses retrieved, but these parameters can be changed via the helper
and num columns, respectively.

40

nonterminal statement description
createStatement CREATE create a table
dropStatement DROP drop (delete) a table
describeStatement DESCRIBE describe an existing table
insertStatement INSERT insert rows into a table
updateStatement UPDATE change values in a table
deleteStatement DELETE delete rows from a table
selectStatement SELECT select rows from a table

Table 3.4: SQL Commands Supported by Squeal

selectStatement = ("SELECT"|"MSELECT") ("ALL" | "DISTINCT") ? selectList
"FROM" tableList
("WHERE" logicExpression)?
("GROUP BY" columnList)?
("HAVING" logicExpression)?
("ORDER BY" orderList)?

selectList = selectItem ("," selectItem)*
selectItem = expression ("AS" <IDENTIFIER>)?

tableList = tableName ("," tableName)*
tableName = <IDENTIFIER> (<IDENTIFIER>)?

orderList = orderItem (","orderItem)*
orderItem = expression ("ASC" | "DESC")
columnList = column ("," column)*
column = <IDENTIFIER> ("." <IDENTIFIER>)

Figure 3-11: Grammar for Squeal Queries. The definitions of nonterminals logicExpression and
expression appear in appendix B.

3.5 Squeal’s SQL core

Table 3.4 lists the SQL commands supported by Squeal. None of them except for SELECT can be
applied to the system tables described in chapter 2, only to user-defined tables. By default, the
CREATE statement does not cause an error if the table being defined already exists; instead, it
drops the old table and then creates a new one. SQL-compliant CREATE behavior can be achieved
with the “-c” command-line option 3.6. Figure 3-11 shows the simplified grammar for SELECT
statements.

As discussed above, not all syntactically-valid statements are acceptable in Squeal. Tables are
divided into three categories, user-readable, automatic, and derived, as shown in Table 3.5. Different
rules apply for queries depending on their category.

3.5.1 User-Readable Tables

User-readable tables include urls and valstring, as well as any tables created by the user. Squeal
passes queries on these tables directly to the SQL client, without performing and checks or side ef-
fects. Changes are effected to urls through the url id function (section 2.2.1), to valstring through
the value id function (section 2.2.1), and to user-defined tables through INSERT statements.

41

table category
urls user-readable
valstring user-readable
link automatic
page automatic
parse automatic
rcontains automatic
rlink automatic
tag automatic
att derived
header derived
list derived

Table 3.5: Categories of Tables. Each table is either user-readable, automatic, or derived. User-
defined tables are user-readable.

3.5.2 Automatic Tables

Queries on automatic tables, such as link require analysis by the Squeal interpreter, which will
turn them into fetch and mselect statements. They are called “automatic” because the entries
are automatically filled in response to user queries. Each automatic table has one or more defining
columns, as discussed in section 3.4.

The most basic query involving an automatic table is of the form:

SELECT * FROM <table type> <table alias> WHERE (<col name> = <expression>)

If <col name> is a defining column for <table type>, this is transformed into:

FETCH <table type>(<col name> = <expression>)
MSELECT * FROM <table type> WHERE (<col name> = <expression>)

If <col name> is not a defining column, the interpreter rejects the statement.
The four key procedures involved in generating fetch statements from SELECT statements are:

1. transform: top-level routine, which calls the below procedures and outputs required fetch
statements (Figure 3-12).

(a) merge: recognize a conjunction idiom, possibly outputting a fetch statement (Figure 3-
14).

(b) findBound: try to find a bound on a defining column of an automatic table appearing
in the SELECT statement; may call itself recursively (Figure 3-13).

(c) refDependences: help construct fetch statements, adding references to tables upon
which the current table depends; may call itself recursively (Figure 3-15).

3.5.3 Derived Tables

Derived tables are not computed directly. Instead, they are computed when their parent table is
computed. For example, header for a source url id is computed as a side effect of computing tag
for the same source url id. Table 3.6 shows the parent tables of each of the derived tables and the
column they have in common with their parent.

Derived tables are dealt with similarly, but not identically, to automatic tables. All changes are
to procedure findBound. Figure 3-16 shows the changes required to findBound.

42

Procedure transform(selectStatement)

1. Initialization

(a) Let unboundedTables be the set of table aliases in selectStatement.

(b) Let whereDef be the WHERE clause in selectStatement.

(c) Let selectionTable by an empty hash table indexed on table aliases.

(d) Let orderedKeys be an empty vector.

2. Call merge(selectStatement, unboundedTables)

3. Let remainingTables be |unboundedTables|.
4. For each table alias currentTableAlias in unboundedTables,

call findBound(currentTable, unboundedTables, fetchClauses, whereDef)

5. Branch point on the value of |unboundedTables|:
(a) remainingTables, fail.

(b) > 0, go to step 3.

(c) else, execute completion code:

i. For each alias in orderedKeys, if the table is not a UserReadableTable
A. Let fetchString = “FETCH ”.
B. Let tablesString = “”.
C. Let clausesString = “ WHERE (1=1) ”
D. Let dependences be the empty set
E. For each tuple [currentTableAlias, LHSstring, op, RHSstring, tablesReferenced]

associated with alias in selectionTable where LHSstring 6= the empty string
1. Append to fetchString: LHSstring + op + RHSstring
2. Add the elements of tablesReferenced to dependences.
3. Let processed be the set containing alias
4. call refDependences(alias, selectionTable, dependences, tablesString, clauses-

String, processed)
5. Output clause: fetchString + “) FROM ” + tablesString + clausesString

ii. return success

Figure 3-12: Pseudocode for transform. Given a selectStatement, transform returns a set of
clauses or fails. Code to handle simple syntactic items, such as commas, has been omitted.

derived table parent table shared column
att tag tag id
header tag url id
list tag url id

Table 3.6: Relations Between Derived Tables and Their Parents

43

Procedure findBound(currentTableAlias, unboundedTables, fetchClauses, whereDef)
Branch point on the type of whereDef

1. disjunction (clause1 OR clause2)

(a) Let returnValue1 be the result of findBound(currentTableAlias, unboundedTables, fetch-
Clauses, clause1)

(b) If returnValue = false, return false

(c) Let returnValue2 be the result of findBound(currentTableAlias, unboundedTables, fetch-
Clauses, clause2)

(d) Merge any new clauses of fetchClauses with the same left-hand side, to create fetch
disjunctions (section 3.4).

(e) Return returnValue2

2. conjunction (clause1 AND clause2)

(a) Let returnValue1 be the result of findBound(currentTableAlias, unboundedTables, fetch-
Clauses, clause1)

(b) Let returnValue2 be the result of findBound(currentTableAlias, unboundedTables, fetch-
Clauses, clause2)

(c) Merge any new clauses of fetchClauses with the same left-hand side, to create fetch
conjunctions 3.4.

(d) return (returnValue1 ∨ returnValue2)

3. negation (e.g, “tab.col 6= 7”), return false

4. relational expression (LHS op RHS)

(a) If (currentTableType is not a UserReadableTable and (op is not “=” or “LIKE”) or
(LHS is not of the form currentTableAlias.col) or
(col is not a defining column for currentTableType)),
return false

(b) Let currentTableType be the type of currentTableAlias

(c) Let referencedTables be the tables referenced in RHS

(d) If |referencedTables ∩ unboundedTables|6= 0,
return false

(e) Let newClause be the tuple
[currentTableAlias, ToString(LHS), op, ToString(RHS), tablesReferenced]

(f) Add newClauses to fetchClauses

(g) Remove currentTableAlias from unboundedTables

(h) return true

Figure 3-13: Pseudocode for findBound. Returns true if an item was removed from unboundedTa-
bles, false otherwise.

44

Procedure merge(selectStatement, unboundedTables)

Look for WHERE clauses of the form:

t1.col1 = t2.col1 AND
t1.col2 = exp1 AND t1.col2 = exp2

where t1 and t2 are different instantiations of the same table T . If found, remove t1 and t2 from
unboundedTables and execute:

fetch T(col2 = (exp1 & exp2))

Figure 3-14: Description of merge

Procedure refDependences(topAlias, selectionTable, tablesReferenced, tablesString, clausesString,
processed)

1. Let newDependences be the empty set

2. For each alias predAlias in tablesReferenced and selectionTable but not in processed

(a) Put predAlias in processed.

(b) Append to tablesString: TableType(currentTableAlias) + “ ” + currentTableAlias

i. Append to tablesString: TableType(predAlias) + “ ” + predAlias
ii. For each tuple [currentTableAlias, LHSstring, operator, RHSstring, currentTa-

blesReferenced] corresponding to predAlias in selectionTable where currentTablesRef-
erenced does not contain topAlias,
A. Append to clausesString: “ AND ” + LHSstring + “ ” + operator + “ ” +

RHSstring
B. Add the elements of currentTablesReferenced to the set newDependences

3. If | newDependences |> 0, call refDependences(topAlias, selectionTable, tablesReferenced,
tablesString, clausesString, processed)

Figure 3-15: Pseudocode for refDependences. The procedure adds table definitions and clauses
of referenced tables to the current fetch statement.

45

4. if whereDef is a relational expression (LHS op RHS)

(a) If (currentTableType is not a UserReadableTable and (op is not “=” or “LIKE”) or
(LHS is not of the form currentTableAlias.col) or
(col is not a defining column for currentTableType)),
return false

(b) Let currentTableType be the type of currentTableAlias

(c) Let parentTable be the table from which currentTableType is derived

(d) Let parentCol be the column through which it is derived

(e) If RHS is parentTable.parentCol where parentTable is the parent table of currentTable-
Type and parentCol is the column through which they are related,
return true

(f) If |referencedTables ∩ unboundedTables|6= 0,
return false

(g) If RHS is a constant expression

i. Let newClause be the tuple
[parentTable, parentCol, ToString(RHS), tablesReferenced]

ii. Add newClauses to fetchClauses
iii. Remove currentTableAlias from unboundedTables
iv. return true

(h) return false

Figure 3-16: Changed Portion of findBound (Figure 3-13) for Derived Tables

usage: java FrontEnd [-d] [-log <filename>] [-maxpage #] [-tolinks #] <filename>*
-d: debug
-c: creation of tables that already exist illegal
-log <filename>: output detailed information to a file
-maxpage #: Maximum size (in Kbytes) of pages to load (default is 30)
-tolinks #: Minimum number of pages to consider per query (default is 10)

Figure 3-17: Usage for Squeal

46

3.6 Command-Line Interface

Figure 3-17 shows the command-line interface to Squeal. If the “debug” (-d) flag is set, extra
information is printed to the standard output stream. If the “creation” (-c) flag is set, it is illegal
to redefine a table that already exists; otherwise, the new definition replaces the old one. If the
“log” option is used, detailed debugging and status information is written to a file. The variable
“maxpage” limits the size of pages to load; by default, the limit is 30 kilobytes. The variable
“tolinks” controls how many links should be retrieved from a search engine after making a query;
the default is ten. Input files can be provided on the command line.

47

